A Comparison of Bivariate Zero-Inflated Poisson Inverse Gaussian Regression Models with and without Exposure Variables

被引:0
|
作者
Ermawati, Ermawati [1 ,2 ]
Purhadi, Purhadi [1 ]
Rahayu, Santi Puteri [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Islam Negeri Alauddin Makassar, Fac Sci & Technol, Dept Math, Makassar 92118, Indonesia
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 02期
关键词
BZIPIGR type II; overdispersion; excess zero; exposure variable; MLE; BHHH; number of mortalities;
D O I
10.3390/sym14020277
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we focus on the comparison of the bivariate zero-inflated Poisson inverse Gaussian regression (BZIPIGR) type II model in two cases: with and without exposure variables. The BZIPIGR type II model is applied to analyze the occurrence of maternal and early neonatal mortality in South Sulawesi Province, Indonesia using 2019 data, which contain many zero values and have the issue of overdispersion in the response variable. Furthermore, to analyze the number of deaths in various areas, the exposure variable is considered. The maximum likelihood estimation (MLE) is used in parameter estimation, which involves numerical iteration and application of the Berndt-Hall-Hall-Hausman (BHHH) algorithm. Sum square error (SSE) serves as the criterion of model selection when exposure variables are included. The existence of exposure variables strongly affects the model's accuracy, especially using the BZIPIGR type II model. According to the SSE and RMSE values, the BZIPIGR type II model with exposure variables performs better than the model without exposure variables in estimating parameter values. All predictors with exposure variables in this study had a significant influence on the number of maternal and early neonatal mortalities.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Estimation of zero-inflated bivariate Poisson regression with missing covariates
    Kouakou, Konan Jean Geoffroy
    Hili, Ouagnina
    Dupuy, Jean-Francois
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (20) : 7216 - 7243
  • [2] Bivariate zero-inflated generalized Poisson regression model with flexible covariance
    Faroughi, Pouya
    Ismail, Noriszura
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7769 - 7785
  • [3] A bivariate zero-inflated Poisson regression model to analyze occupational injuries
    Wang, K
    Lee, AH
    Yau, KKW
    Carrivick, PJW
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2003, 35 (04): : 625 - 629
  • [4] Zero-inflated models and estimation in zero-inflated Poisson distribution
    Wagh, Yogita S.
    Kamalja, Kirtee K.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2248 - 2265
  • [5] Score Tests for Zero-inflated Double Poisson Regression Models
    Feng-chang XIE
    Jin-guan LIN
    Bo-cheng WEI
    [J]. Acta Mathematicae Applicatae Sinica, 2017, 33 (04) : 851 - 864
  • [6] Score tests for zero-inflated double poisson regression models
    Feng-chang Xie
    Jin-guan Lin
    Bo-cheng Wei
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 851 - 864
  • [7] Score Tests for Zero-inflated Double Poisson Regression Models
    Xie, Feng-chang
    Lin, Jin-guan
    Wei, Bo-cheng
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (04): : 851 - 864
  • [8] Frequentist model averaging for zero-inflated Poisson regression models
    Zhou, Jianhong
    Wan, Alan T. K.
    Yu, Dalei
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 679 - 691
  • [9] Tests for zero inflation in a bivariate zero-inflated Poisson model
    Lee, JungBok
    Jung, Byoung Cheol
    Jin, Seo Hoon
    [J]. STATISTICA NEERLANDICA, 2009, 63 (04) : 400 - 417
  • [10] Score test for testing zero-inflated Poisson regression against zero-inflated generalized Poisson alternatives
    Zamani, Hossein
    Ismail, Noriszura
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (09) : 2056 - 2068