Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase

被引:17
|
作者
Shoji, Mitsuo [1 ,2 ]
Murakawa, Takeshi [3 ]
Nakanishi, Shota [4 ]
Boero, Mauro [5 ]
Shigeta, Yasuteru [1 ]
Hayashi, Hideyuki [6 ]
Okajima, Toshihide [4 ,6 ]
机构
[1] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[2] JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Osaka Med & Pharmaceut Univ, Dept Biochem, 2-7 Daigakumachi, Takatsuki, Osaka 5698686, Japan
[4] Osaka Univ, Inst Sci & Ind Res, 8-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan
[5] Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, 23 Rue Loess, F-67034 Strasbourg, France
[6] Osaka Med & Pharmaceut Univ, Dept Chem, 2-7 Daigakumachi, Takatsuki, Osaka 5698686, Japan
关键词
EFFECTIVE CORE POTENTIALS; OXIDATIVE HALF-REACTION; ARTHROBACTER-GLOBIFORMIS; ACTIVE-SITE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; OXYGEN REDUCTION; TPQ COFACTOR; BIOGENESIS; GENERATION;
D O I
10.1039/d2sc01356h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copper amine oxidase from Arthrobacter globiformis (AGAO) catalyses the oxidative deamination of primary amines via a large conformational change of a topaquinone (TPQ) cofactor during the semiquinone formation step. This conformational change of TPQ occurs in the presence of strong hydrogen bonds and neighboring bulky amino acids, especially the conserved Asn381, which restricts TPQ conformational changes over the catalytic cycle. Whether such a semiquinone intermediate is catalytically active or inert has been a matter of debate in copper amine oxidases. Here, we show that the reaction rate of the Asn381Ala mutant decreases 160-fold, and the X-ray crystal structures of the mutant reveals a TPQ-flipped conformation in both the oxidized and reduced states, preceding semiquinone formation. Our hybrid quantum mechanics/molecular mechanics (QM/MM) simulations show that the TPQ conformational change is realized through the sequential steps of the TPQ ring-rotation and slide. We determine that the bulky side chain of Asn381 hinders the undesired TPQ ring-rotation in the oxidized form, favoring the TPQ ring-rotation in reduced TPQ by a further stabilization leading to the TPQ semiquinone form. The acquired conformational flexibility of TPQ semiquinone promotes a high reactivity of Cu(i) to O-2, suggesting that the semiquinone form is catalytically active for the subsequent oxidative half-reaction in AGAO. The ingenious molecular mechanism exerted by TPQ to achieve the "state-specific" reaction sheds new light on a drastic environmental transformation around the catalytic center.
引用
收藏
页码:10923 / 10938
页数:16
相关论文
共 23 条
  • [1] Neutron Crystallography of a Semiquinone Radical Intermediate of Copper Amine Oxidase Reveals a Substrate-Assisted Conformational Change of the Peptidyl Quinone Cofactor
    Murakawa, Takeshi
    Kurihara, Kazuo
    Shoji, Mitsuo
    Yano, Naomine
    Kusaka, Katsuhiro
    Kawano, Yoshiaki
    Suzuki, Mamoru
    Shigeta, Yasuteru
    Yano, Takato
    Adachi, Motoyasu
    Tanizawa, Katsuyuki
    Okajima, Toshihide
    ACS CATALYSIS, 2023, 13 (18): : 12403 - 12413
  • [2] In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase
    Murakawa, Takeshi
    Baba, Seiki
    Kawano, Yoshiaki
    Hayashi, Hideyuki
    Yano, Takato
    Kumasaka, Takashi
    Yamamoto, Masaki
    Tanizawa, Katsuyuki
    Okajima, Toshihide
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (01) : 135 - 140
  • [3] STRUCTURAL BASIS FOR CONFORMATIONAL CHANGE OF THE TOPAQUINONE COFACTOR DURING THE CATALYTIC REACTION OF BACTERIAL COPPER AMINE OXIDASE
    Okajima, Toshihide
    Murakawa, Takeshi
    Baba, Seiki
    Kanagawa, Satoshi
    Hayashi, Hideyuki
    Yano, Takato
    Kumasaka, Takashi
    Tanizawa, Katsuyuki
    PROTEIN SCIENCE, 2019, 28 : 170 - 170
  • [4] X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase
    Misa Kim
    Toshihide Okajima
    Seiichiro Kishishita
    Megumi Yoshimura
    Asako Kawamori
    Katsuyuki Tanizawa
    Hiroshi Yamaguchi
    Nature Structural Biology, 2002, 9 : 591 - 596
  • [5] X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase
    Kim, M
    Okajima, T
    Kishishita, S
    Yoshimura, M
    Kawamori, A
    Tanizawa, K
    Yamaguchi, H
    NATURE STRUCTURAL BIOLOGY, 2002, 9 (08) : 591 - 596
  • [6] Reinvestigation of metal ion specificity for quinone cofactor biogenesis in bacterial copper amine oxidase
    Okajima, T
    Kishishita, S
    Chiu, YC
    Murakawa, T
    Kim, M
    Yamaguchi, H
    Hirota, S
    Kuroda, S
    Tanizawa, K
    BIOCHEMISTRY, 2005, 44 (36) : 12041 - 12048
  • [7] X-RAY SNAPSHOTS OF QUINONE COFACTOR BIOGENESIS IN BACTERIAL COPPER AMINE OXIDASE
    Kim, M.
    Okajima, T.
    Kishishita, S.
    Yoshimura, M.
    Kawamori, A.
    Tanizawa, K.
    Yamaguchi, H.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C298 - C298
  • [8] A SUBSTRATE COFACTOR FREE-RADICAL INTERMEDIATE IN THE REACTION-MECHANISM OF COPPER AMINE OXIDASE
    PEDERSEN, JZ
    ELSHERBINI, S
    FINAZZIAGRO, A
    ROTILIO, G
    BIOCHEMISTRY, 1992, 31 (01) : 8 - 12
  • [9] Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor
    Matsunami, H
    Okajima, T
    Hirota, S
    Yamaguchi, H
    Hori, H
    Kuroda, S
    Tanizawa, K
    BIOCHEMISTRY, 2004, 43 (08) : 2178 - 2187
  • [10] Neutron crystallography of copper amine oxidase reveals keto/enolate interconversion of the quinone cofactor and unusual proton sharing
    Murakawa, Takeshi
    Kurihara, Kazuo
    Shoji, Mitsuo
    Shibazaki, Chie
    Sunami, Tomoko
    Tamada, Taro
    Yano, Naomine
    Yamada, Taro
    Kusaka, Katsuhiro
    Suzuki, Mamoru
    Shigeta, Yasuteru
    Kuroki, Ryota
    Hayashi, Hideyuki
    Yano, Takato
    Tanizawa, Katsuyuki
    Adachi, Motoyasu
    Okajima, Toshihide
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (20) : 10818 - 10824