Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route

被引:68
|
作者
Babay, Salem [1 ]
Mhiri, Tahar [1 ]
Toumi, Mouhamed [1 ]
机构
[1] Univ Sfax, Lab Physicochem Solid States, Sfax 3038, Tunisia
关键词
Maghemite (gamma-Fe2O3); Coprecipitation; Nanoparticles; Crystallographic studies; Fe-57; Mossbauer; Phase transition; X-RAY; IRON-OXIDE; POWDER DIFFRACTION; RAMAN; PARTICLES; MAGNETITE; HEMATITE; NANOPARTICLES; ALPHA-FE2O3; MOSSBAUER;
D O I
10.1016/j.molstruc.2014.12.067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Maghemite (gamma-Fe2O3) is synthesized by one step coprecipitation method from mixed salt solutions containing Fe(II) and Fe(III) salts. This material was characterized using Rietveld refinement of the X-ray powder diffraction, heating stage Raman microscopy and Mossbauer spectroscopies. The Rietveld refinement of XRD pattern has indicated that the gamma-Fe2O3 shows a cubic cell structure. The superstructure reflection related to the long-range ordering of cation lattice vacancies was not detected in the diffraction pattern. The extra peaks corresponding to the Lepidocrocite phase gamma FeOOH in a small amount were observed in the XRD pattern. The crystallite size of maghemite compound is 18 nm calculated using Williamson-Hall method. Using Mossbauer spectroscopy, the result of Rietveld refinement was confirmed by the presence of magnetic sextet arising from the metallic iron of gamma-Fe2O3, and a paramagnetic doublet inferring the presence of paramagnetic iron of gamma FeOOH. Heating stage Raman microscopy reveals that the temperature of transition to maghemite phase up to hematite is 550 degrees C. The heating of our maghemite (gamma-Fe2O3) powder up to 550 degrees C yields a single phase of Hematite hexagonal-corundum structure with R (3) over barc space group. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:286 / 293
页数:8
相关论文
共 50 条
  • [1] One-step synthesis of maghemite (γ-Fe2O3) nano-particles by wet chemical method
    Darezereshki, Esmaeel
    Ranjbar, Mohammad
    Bakhtiari, Fereshteh
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 502 (01) : 257 - 260
  • [2] One-step synthesis of γ-Fe2O3 nanoparticles by laser ablation
    Wang, ZM
    Liu, Y
    Zeng, XY
    POWDER TECHNOLOGY, 2006, 161 (01) : 65 - 68
  • [3] One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite
    Darezereshki, Esmaeel
    MATERIALS LETTERS, 2011, 65 (04) : 642 - 645
  • [4] Synthesis, structural, and microwave absorption properties of hematite (α-Fe2O3) and maghemite (γ-Fe2O3)
    Husain, H.
    Nurhayati, N.
    Susanto, A.
    Sujiono, E. H.
    Taryana, Y.
    Krisdayanti, K.
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [5] Electrical and Magnetic Studies of Maghemite (γ-Fe2O3) Prepared by the Sol–Gel Route
    M. Benamara
    N. Zahmouli
    S. Soreto Teixeira
    M. P. F. Graça
    L. El Mir
    M. A. Valente
    Journal of Electronic Materials, 2022, 51 : 2698 - 2707
  • [6] One-step synthesis of core(Cr)/shell(γ-Fe2O3) nanoparticles
    Lai, J
    Shafi, KVPM
    Ulman, A
    Loos, K
    Popovitz-Biro, R
    Lee, Y
    Vogt, T
    Estournès, C
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (16) : 5730 - 5731
  • [7] One-step synthesis of core(Cr)/shell(γ-Fe2O3) nanoparticles
    1600, American Chemical Society, Columbus, United States (127):
  • [8] One-step solution synthesis of Fe2O3 nanoparticles at low temperature
    Sun, Youyi
    Guo, Guizheng
    Yang, Binhua
    Cai, Wei
    Tian, Ye
    He, Minghong
    Liu, Yaqing
    PHYSICA B-CONDENSED MATTER, 2011, 406 (04) : 1013 - 1016
  • [9] The synthesis of maghemite and hematite (γ-Fe2O3, α-Fe2O3) nanospheres
    Dar, M. A.
    Ansari, S. G.
    Wahab, R.
    Kim, Young-Soon
    Shin, Hyung-Shik
    PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 157 - +
  • [10] One-step solid state synthesis of capped γ-Fe2O3 nanocrystallites
    Zboril, R.
    Bakandritsos, A.
    Mashlan, M.
    Tzitzios, V.
    Dallas, P.
    Trapalis, Ch
    Petridis, D.
    NANOTECHNOLOGY, 2008, 19 (09)