Commuting Toeplitz operators on the Segal-Bargmann space

被引:22
|
作者
Bauer, Wolfram [1 ]
Lee, Young Joo [2 ]
机构
[1] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
[2] Chonnam Natl Univ, Dept Math, Kwangju 500757, South Korea
关键词
Toeplitz operator; Mellin transform; Reproducing kernel Hilbert space; Radial symbol; C-ASTERISK-ALGEBRAS; QUANTIZATION; SYMBOLS;
D O I
10.1016/j.jfa.2010.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider two Toeplitz operators T-g, T-f on the Segal-Bargmann space over the complex plane. Let us assume that g is a radial function and both operators commute. Under certain growth condition at infinity of f and g we show that f must be radial, as well. We give a counterexample of this fact in case of bounded Toeplitz operators but a fast growing radial symbol g. In this case the vanishing commutator [T-g, T-f] = 0 does not imply the radial dependence of f. Finally, we consider Toeplitz operators on the Segal-Bargmann space over C-n and n > 1, where the commuting property of Toeplitz operators can be realized more easily. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:460 / 489
页数:30
相关论文
共 50 条