A Morse-Smale index theorem for indefinite elliptic systems and bifurcation

被引:12
|
作者
Portaluri, Alessandro [1 ]
Waterstraat, Nils [2 ]
机构
[1] Univ Turin, Dept Agr Forest & Food Sci, I-10095 Grugliasco, TO, Italy
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
SPECTRAL FLOW; DIRICHLET PROBLEMS; CRITICAL-POINTS; MASLOV INDEX; FUNCTIONALS; GEODESICS;
D O I
10.1016/j.jde.2014.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalise the semi-Riemannian Morse index theorem to non-degenerate elliptic systems of partial differential equations on star-shaped domains. Moreover, we apply our theorem to bifurcation from a branch of trivial solutions of semilinear systems, where the bifurcation parameter is introduced by shrinking the domain to a point. This extends recent results of the authors for scalar equations. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1715 / 1748
页数:34
相关论文
共 50 条
  • [1] A Morse-Smale index theorem for indefinite elliptic systems and bifurcation (vol 258, pg 1715, 2015)
    Portaluri, Alessandro
    Waterstraat, Nils
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 3067 - 3069
  • [2] On bifurcation for semilinear elliptic Dirichlet problems and the Morse-Smale index theorem
    Portaluri, Alessandro
    Waterstraat, Nils
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 572 - 575
  • [3] Morse-Smale index theorems for elliptic boundary deformation problems
    Dalbono, Francesca
    Portaluri, Alessandro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (02) : 463 - 480
  • [4] MORSE-SMALE SYSTEMS AND THE HOMOLOGY THEORY
    FELSHTYN, AL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1982, (09): : 58 - 66
  • [5] Global dynamics of Morse-Smale systems
    E. V. Zhuzhoma
    V. S. Medvedev
    Proceedings of the Steklov Institute of Mathematics, 2008, 261
  • [6] Global Dynamics of Morse-Smale Systems
    Zhuzhoma, E. V.
    Medvedev, V. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 261 (01) : 112 - 135
  • [7] MORSE-SMALE CIRCLE DIFFEOMORPHISMS AND MODULI OF ELLIPTIC CURVES
    Ilyashenko, Yulij
    Moldavskis, Vadims
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (02) : 531 - 540
  • [8] ON MORSE-SMALE DIFFEOMORPHISMS
    PALIS, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (05) : 985 - &
  • [9] Morse-Smale Regression
    Gerber, Samuel
    Ruebel, Oliver
    Bremer, Peer-Timo
    Pascucci, Valerio
    Whitaker, Ross T.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (01) : 193 - 214
  • [10] Morse-Smale systems with three nonwandering points
    E. V. Zhuzhoma
    V. S. Medvedev
    Doklady Mathematics, 2011, 84 : 604 - 606