A boundary multiplier/fictitious domain method for the steady incompressible Navier-Stokes equations

被引:0
|
作者
Girault, V
Glowinski, R
López, H
Vila, JP
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Cent Univ Venezuela, Fac Ciencias, Escuela Comp, Caracas, Venezuela
[4] Inst Natl Sci Appl, MIP, UMR CNRS 9640, F-31077 Toulouse, France
关键词
D O I
10.1007/PL00005441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the error of a fictitious-domain method with boundary Lagrange multiplier. It is applied to solve a non-homogeneous steady incompressible Navier-Stokes problem in a domain with a multiply-connected boundary. The interior mesh in the fictitious domain and the boundary mesh are independent, up to a mesh-length ratio.
引用
收藏
页码:75 / 103
页数:29
相关论文
共 50 条
  • [1] A boundary multiplier/fictitious domain method for the steady incompressible Navier-Stokes equations
    V. Girault
    R. Glowinski
    H. López
    J.-P. Vila
    Numerische Mathematik, 2001, 88 : 75 - 103
  • [2] A fictitious domain method for Navier-Stokes equations
    Girault, V
    Glowinski, R
    Lopez, H
    Vila, JP
    COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY, 1997, : 149 - 159
  • [3] Application of the Fictitious Domain Method for Navier-Stokes Equations
    Temirbekov, Almas
    Zhaksylykova, Zhadra
    Malgazhdarov, Yerzhan
    Kasenov, Syrym
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 2035 - 2055
  • [4] A FICTITIOUS DOMAIN METHOD FOR EXTERNAL INCOMPRESSIBLE VISCOUS-FLOW MODELED BY NAVIER-STOKES EQUATIONS
    GLOWINSKI, R
    PAN, TW
    PERIAUX, J
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 112 (1-4) : 133 - 148
  • [5] The Fictitious Domain Method for the Navier-Stokes Equations in Natural Variables
    Zhaksylykova, Zhadra
    Temirbekov, Nurlan
    Malgazhdarov, Yerzhan
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 2325
  • [6] Steady Navier-Stokes equations in a domain with piecewise smooth boundary
    Itoh, Shigeharu
    Tanaka, Naoto
    Tani, Atusi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (3-4) : 685 - 691
  • [9] STEADY AND UNSTEADY SOLUTIONS OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    ROGERS, SE
    KWAK, D
    KIRIS, C
    AIAA JOURNAL, 1991, 29 (04) : 603 - 610
  • [10] Derivation of Prandtl boundary layer equations for the incompressible Navier-Stokes equations in a curved domain
    Liu, Cheng-Jie
    Wang, Ya-Guang
    APPLIED MATHEMATICS LETTERS, 2014, 34 : 81 - 85