Photoacoustic image reconstruction with uncertainty quantification

被引:1
|
作者
Tick, J. [1 ]
Pulkkinen, A. [1 ]
Tarvainen, T. [1 ,2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, POB 1627, Kuopio 70211, Finland
[2] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
来源
EMBEC & NBC 2017 | 2018年 / 65卷
基金
芬兰科学院;
关键词
photoacoustic tomography; inverse problems; Bayesian methods; uncertainty quantification; TOMOGRAPHY; INVERSION; ALGORITHM;
D O I
10.1007/978-981-10-5122-7_29
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Photoacoustic tomography is a hybrid imaging technique that has various applications in biomedicine. In a photoacoustic image reconstruction problem (inverse problem), an initial pressure distribution is reconstructed from measured ultrasound waves which are generated by the photoacoustic effect induced by an optical excitation. In this work, the image reconstruction problem is approached in the framework of Bayesian inversion. The approach is tested with three dimensional numerical simulations. The initial pressure distribution is reconstructed in full-view and limited-view setups. In addition, the reliability of the obtained estimates is assessed. The numerical studies show that accurate estimates of the initial pressure distribution and uncertainty information can be obtained utilizing Bayesian approach.
引用
收藏
页码:113 / 116
页数:4
相关论文
共 50 条
  • [1] Image reconstruction with uncertainty quantification in photoacoustic tomography
    Tick, Jenni
    Pulkkinen, Aki
    Tarvainen, Tanja
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (04): : 1951 - 1961
  • [2] MCMC-BASED IMAGE RECONSTRUCTION WITH UNCERTAINTY QUANTIFICATION
    Bardsley, Johnathan M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1316 - A1332
  • [3] Bayesian Inference and Uncertainty Quantification for Medical Image Reconstruction with Poisson Data
    Zhou, Qingping
    Yu, Tengchao
    Zhang, Xiaoqun
    Li, Jinglai
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (01): : 29 - 52
  • [4] Radiation image reconstruction and uncertainty quantification using a Gaussian process prior
    Lee, Jaewon
    Joshi, Tenzing H.
    Bandstra, Mark S.
    Gunter, Donald L.
    Quiter, Brian J.
    Cooper, Reynold J.
    Vetter, Kai
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] UNCERTAINTY QUANTIFICATION IN DYNAMIC IMAGE RECONSTRUCTION WITH APPLICATIONS TO CRYO-EM
    Lai, Tze Leung
    Wang, Shao-Hsuan
    Chung, Szu-Chi
    Chang, Wei-hau
    Tu, I-Ping
    [J]. STATISTICA SINICA, 2023, 33 : 1771 - 1788
  • [6] Image Reconstruction in Intravascular Photoacoustic Imaging
    Sheu, Yae-lin
    Chou, Cheng-Ying
    Hsieh, Bao-Yu
    Li, Pai-Chi
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (10) : 2067 - 2077
  • [7] Photoacoustic image reconstruction - A quantitative analysis
    Sperl, Jonathan I.
    Zell, Karin
    Menzenbach, Peter
    Haisch, Christoph
    Ketzer, Stephan
    Marquart, Markus
    Koenig, Hartmut
    Vogel, Mika W.
    [J]. NOVEL OPTICAL INSTRUMENTATION FOR BIOMEDICAL APPLICATIONS III, 2007, 6631
  • [8] Recent development in photoacoustic image reconstruction
    Liu, PY
    [J]. LASER-TISSUE INTERACTION IX. PROCEEDINGS OF, 1998, 3254 : 325 - 330
  • [9] Photoacoustic image reconstruction in Bayesian framework
    Tick, Jenni
    Pulkkinen, Aki
    Lucka, Felix
    Ellwood, Robert
    Cox, Ben T.
    Arridge, Simon R.
    Tarvainen, Tanja
    [J]. PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2018, 2018, 10494
  • [10] Uncertainty Quantification in Deep MRI Reconstruction
    Edupuganti, Vineet
    Mardani, Morteza
    Vasanawala, Shreyas
    Pauly, John
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (01) : 239 - 250