Explicit formulas for Hecke Gauss sums in quadratic number fields

被引:1
|
作者
Boylan, Hatice [1 ,2 ]
Skoruppa, Nils-Peter [1 ]
机构
[1] Univ Siegen, Fachbereich Math, D-57072 Siegen, Germany
[2] Bilkent Univ, Matemat Bolumu, Ankara, Turkey
关键词
Hecke reciprocity; Gauss sums;
D O I
10.1007/s12188-010-0041-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an explicit formula for Hecke Gauss sums of quadratic number fields. As an immediate consequence we obtain a quadratic reciprocity law in quadratic number fields which generalizes the classical one given by Hecke. The proofs use, apart from the well-known formulas for ordinary Gauss sums, only elementary algebraic manipulations.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 50 条
  • [1] Explicit formulas for Hecke Gauss sums in quadratic number fields
    Hatice Boylan
    Nils-Peter Skoruppa
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2010, 80 : 213 - 226
  • [2] Powers of Gauss sums in quadratic fields
    Momihara, Koji
    JOURNAL OF NUMBER THEORY, 2022, 238 : 331 - 352
  • [4] ON GAUSS-HECKE SUMS
    SHIRATANI, K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1964, 16 (01) : 32 - +
  • [5] Sums of Kloosterman sums for real quadratic number fields
    Bruggeman, RW
    Miatello, RJ
    Pacharoni, I
    JOURNAL OF NUMBER THEORY, 2003, 99 (01) : 90 - 119
  • [6] ON THE DEDEKIND SUMS AND THE QUADRATIC GAUSS SUMS
    Wang Tingting
    Zhang Wenpeng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (01): : 77 - 83
  • [7] CLASS NUMBER FORMULAS FOR IMAGINARY QUADRATIC FIELDS
    DAVIS, RW
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 287 : 369 - 379
  • [8] Explicit quadratic Chabauty over number fields
    Jennifer S. Balakrishnan
    Amnon Besser
    Francesca Bianchi
    J. Steffen Müller
    Israel Journal of Mathematics, 2021, 243 : 185 - 232
  • [9] Explicit quadratic Chabauty over number fields
    Balakrishnan, Jennifer S.
    Besser, Amnon
    Bianchi, Francesca
    Mueller, J. Steffen
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 243 (01) : 185 - 232
  • [10] Moments of quadratic Hecke L-functions of imaginary quadratic number fields
    Gao, Peng
    Zhao, Liangyi
    JOURNAL OF NUMBER THEORY, 2020, 209 : 359 - 377