Symplectic discretization of Port Controlled Hamiltonian systems

被引:1
|
作者
Lefevre, Laurent [1 ]
Medianu, Silviu [1 ]
机构
[1] Univ Grenoble Alpes, LCIS, F-26902 St Martin Dheres, France
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
symplectic discretization; Port Controlled Hamiltonian systems; discrete-time systems; linear systems; nonlinear systems; DISCRETE; MECHANICS;
D O I
10.1016/j.ifacol.2017.08.708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a time-discretization framework is proposed for Port Controlled Hamiltonian (PCH) systems using combined discretization rules for the flows and efforts, which preserves the continuous-time structure. As examples for this formulation, three symplectic time-discretization schemes are presented, using classic discretization rules (implicit/explicit Euler, implicit mid-point and implicit trapezoidal), for the flows and efforts. As continuous-time model for exemplification using this framework, a linear capacitor microphone circuit is selected. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3629 / 3634
页数:6
相关论文
共 50 条
  • [1] Invariant tori of dissipatively perturbed Hamiltonian systems under symplectic discretization
    Hairer, E
    Lubich, C
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (01) : 57 - 71
  • [2] Structure-preserving discretization for port-Hamiltonian descriptor systems
    Mehrmann, Volker
    Morandin, Riccardo
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6863 - 6868
  • [3] On feedback equivalence to port controlled Hamiltonian systems
    Cheng, DZ
    Astolfi, A
    Ortega, R
    SYSTEMS & CONTROL LETTERS, 2005, 54 (09) : 911 - 917
  • [4] A class of port-controlled Hamiltonian systems
    Jayawardhana, Bayu
    Weiss, George
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 5630 - 5632
  • [5] Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates
    Brugnoli, Andrea
    Alazard, Daniel
    Pommier-Budinger, Valerie
    Matignon, Denis
    APPLIED MATHEMATICAL MODELLING, 2019, 75 : 940 - 960
  • [6] Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates
    Brugnoli, Andrea
    Alazard, Daniel
    Pommier-Budinger, Valerie
    Matignon, Denis
    APPLIED MATHEMATICAL MODELLING, 2019, 75 : 961 - 981
  • [7] Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems
    Seslija, Marko
    Scherpen, Jacquelien M. A.
    van der Schaft, Arjan
    AUTOMATICA, 2014, 50 (02) : 369 - 377
  • [8] Boundary controlled irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    Maschke, Bernhard
    CHEMICAL ENGINEERING SCIENCE, 2022, 248
  • [9] Port controlled Hamiltonian representation of distributed parameter systems
    Maschke, BMJ
    van der Schaft, AJ
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL, 2000, : 27 - 37
  • [10] Nonlinear port controlled Hamiltonian systems under sampling
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    Tiefensee, Fernando
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1782 - 1787