Implicit alternative splicing for genetic algorithms

被引:0
|
作者
Rohlfshagen, Philipp [1 ]
Bullinaria, John A. [1 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
关键词
D O I
10.1109/CEC.2007.4424453
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a new nature-inspired variation operator for binary encodings in genetic algorithms (GAs). Our method, called implicit alternative splicing (iAS), is repeatedly applied to the individual encodings in the algorithm's population and inverts randomly chosen segments of decreasing size in a systematic fashion. Its goal is to determine the largest possible segment the inversion of which yields no loss in the encoding's quality. The application of iAS potentially produces a new encoding of equal or greater quality that is maximum possible Hamming distance from its source. This allows iAS to uphold the diversity of the population even if a minimal population size is chosen. This significantly improves the performance of an otherwise standard GA on a representative set of three different optimisation problems. Empirical results are compared and analysed and future work prospects are considered.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 50 条
  • [1] Genetic variation and alternative splicing
    Estivill, Xavier
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (04) : 357 - 359
  • [2] Genetic variation and alternative splicing
    Xavier Estivill
    [J]. Nature Biotechnology, 2015, 33 : 357 - 359
  • [3] IMPLICIT PARALLELISM IN GENETIC ALGORITHMS
    BERTONI, A
    DORIGO, M
    [J]. ARTIFICIAL INTELLIGENCE, 1993, 61 (02) : 307 - 314
  • [4] The Genetic Regulation of Alternative Splicing inPopulus deltoides
    Noble, Jerald D.
    Balmant, Kelly M.
    Dervinis, Christopher
    de los Campos, Gustavo
    Resende, Marcio F. R., Jr.
    Kirst, Matias
    Barbazuk, William Brad
    [J]. FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [5] Implicit Representation in Genetic Algorithms Using Redundancy
    Raich, Anne M.
    Ghaboussi, Jamshid
    [J]. EVOLUTIONARY COMPUTATION, 1997, 5 (03) : 277 - 302
  • [6] Genetic evidence for a nova regulator of alternative splicing in the brain
    Grabowski, PJ
    [J]. NEURON, 2000, 25 (02) : 254 - 256
  • [7] The contribution of alternative splicing to genetic risk for psychiatric disorders
    Reble, E.
    Dineen, A.
    Barr, C. L.
    [J]. GENES BRAIN AND BEHAVIOR, 2018, 17 (03)
  • [8] Identification of common genetic variation that modulates alternative splicing
    Hull, Jeremy
    Campino, Susana
    Rowlands, Kate
    Chan, Man-Suen
    Copley, Richard R.
    Taylor, Martin S.
    Rockett, Kirk
    Elvidge, Gareth
    Keating, Brendan
    Knight, Julian
    Kwiatkowski, Dominic
    [J]. PLOS GENETICS, 2007, 3 (06) : 1009 - 1018
  • [9] GENETIC AND BIOCHEMICAL-ANALYSIS OF ALTERNATIVE RNA SPLICING
    HODGES, D
    BERNSTEIN, SI
    [J]. ADVANCES IN GENETICS, VOL 31, 1994, 31 : 207 - 281
  • [10] Interactive genetic algorithms based on implicit knowledge model
    Guo, Yi-nan
    Gong, Dun-wei
    Yang, Ding-quan
    [J]. SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 369 - 376