Inferring synaptic connectivity from spatio-temporal spike patterns

被引:24
|
作者
Van Bussel, Frank [1 ,2 ,3 ]
Kriener, Birgit [1 ,2 ,4 ]
Timme, Marc [1 ,2 ,3 ]
机构
[1] Max Planck Inst Dynam & Self Org, Network Dynam Grp, D-37073 Gottingen, Germany
[2] Bernstein Ctr Computat Neurosci Gottingen, Gottingen, Germany
[3] Univ Gottingen, Fak Phys, Gottingen, Germany
[4] Norwegian Univ Life Sci, Inst Math Sci & Technol, As, Norway
关键词
networks; inverse methods; leaky integrate-and-fire neuron; irregular spiking; chaotic spiking; synchronization; NEOCORTICAL NEURONS; NETWORKS; DYNAMICS; STATE;
D O I
10.3389/fncom.2011.00003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Networks of well-known dynamical units but unknown interaction topology arise across various fields of biology, including genetics, ecology, and neuroscience. The collective dynamics of such networks is often sensitive to the presence (or absence) of individual interactions, but there is usually no direct way to probe for their existence. Here we present an explicit method for reconstructing interaction networks of leaky integrate-and-fire neurons from the spike patterns they exhibit in response to external driving. Given the dynamical parameters are known, the approach works well for networks in simple collective states but is also applicable to networks exhibiting complex spatio-temporal spike patterns. In particular, stationarity of spiking time series is not required.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Behaviorally relevant spatio-temporal spike patterns in parallel spike trains
    Stella, Alessandra
    Bouss, Peter
    Palm, Guenther
    Riehle, Alexa
    Brochier, Thomas
    Gruen, Sonja
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2021, 49 (SUPPL 1) : S80 - S81
  • [2] SPAN: SPIKE PATTERN ASSOCIATION NEURON FOR LEARNING SPATIO-TEMPORAL SPIKE PATTERNS
    Mohemmed, Ammar
    Schliebs, Stefan
    Matsuda, Satoshi
    Kasabov, Nikola
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2012, 22 (04)
  • [3] Inferring the Spatio-temporal Patterns of Dengue Transmission from Surveillance Data in Guangzhou, China
    Zhu, Guanghu
    Liu, Jiming
    Tan, Qi
    Shi, Benyun
    PLOS NEGLECTED TROPICAL DISEASES, 2016, 10 (04):
  • [4] Soil erosion patterns: evolution, spatio-temporal dynamics and connectivity
    Helming, K
    Auzet, AV
    Favis-Mortlock, D
    EARTH SURFACE PROCESSES AND LANDFORMS, 2005, 30 (02) : 131 - 132
  • [5] Significant spatio-temporal spike patterns in macaque monkey motor cortex
    Gruen, Sonja
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2021, 49 (SUPPL 1) : S4 - S5
  • [6] Dependence of spatio-temporal patterns of neuronal activity on spatial patterns of synaptic connectivity in a computational model of the subthalamo-pallidal network
    Tomita, Masahiro
    Kitano, Katsunori
    NEUROSCIENCE RESEARCH, 2008, 61 : S242 - S242
  • [7] Inferring Traffic Patterns of Dhaka City: A Spatio-Temporal Analysis Over a Year
    Rahman, Md. Moshiur
    Nower, Naushin
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2024, 25 (04) : 409 - 426
  • [8] Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE
    Quaglio, Pietro
    Yegenoglu, Alper
    Torre, Emiliano
    Endres, Dominik M.
    Gruen, Sonja
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2017, 11
  • [9] Synaptic Mechanisms Governing Spatio-Temporal Activity Patterns in the Olfactory Bulb
    Strowbridge, Ben W.
    CHEMICAL SENSES, 2008, 33 (08) : S21 - S21
  • [10] Inferring social roles with spatio-temporal awareness
    Hu Y.
    Li S.
    Yu W.
    Yang S.
    Fang Q.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2016, 38 (03): : 517 - 522