A Numerical Approach for the Existence of Dissipative Weak Solutions to a Compressible Two-fluid Model

被引:1
|
作者
Li, Yang [1 ,2 ]
She, Bangwei [3 ,4 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Anhui Univ, Ctr Pure Math, Hefei 230601, Peoples R China
[3] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[4] Charles Univ Prague, Dept Anal, Sokolovska 83, Prague 18675 8, Czech Republic
基金
中国国家自然科学基金;
关键词
Two-fluid model; Dissipative weak solutions; Finite volume method; Convergence; FINITE-VOLUME SCHEME; STRONG UNIQUENESS; CONVERGENCE;
D O I
10.1007/s00021-022-00706-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As an extension of the recent work of NovotnATIN SMALL LETTER Y WITH ACUTE et al. (J Elliptic Parabol Equ 7:537-570 2021), we study the dissipative weak solutions to a compressible two-fluid model system describing the time evolution of two fluid flows sharing the same velocity field in multi-dimensional spaces. We prove the existence of dissipative weak solutions alternatively via a finite volume approximation. Further, we apply the weak-strong uniqueness principle to show the convergence of the finite volume approximation towards the strong solution on the lifespan of the latter.
引用
收藏
页数:17
相关论文
共 50 条