DEM study on the packing density and randomness for packing of ellipsoids

被引:25
|
作者
Gan, Jieqing [1 ]
Yu, Aibing [1 ]
机构
[1] Monash Univ, Dept Chem Engn, Lab Simulat & Modelling Particulate Syst, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
Packing; Vibration; Orientational order; Ellipsoids; Discrete element method; Wall effect; PARTICLE SIMULATION; GAS FLUIDIZATION;
D O I
10.1016/j.powtec.2019.07.012
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents a numerical study on the packing density and bed orderness in packing and vibration of ellipsoids by discrete element method (DEM). The shapes considered are oblate and prolate spheroids, with aspect ratio varying from 0.15 to 4.0. It is shown that under the poured packing conditions of coarse ellipsoids, flat or elongate particles show strong orientation preference on the horizontal direction. For packing with different particle sizes, when increasing particle size, packing density increases, global orientational order increases. For the cases of packing under one-dimensional vibration with periodic boundary condition and cylindrical wall conditions, after vibration, packing density increases, but global orientational order decreases. Boundary condition affects packing structure under both poured packing and vibration conditions. Under the cylindrical wall condition, considerable part of oblate particles have the symmetry axis pointing to the horizontal direction and quite a number of prolate particles have the symmetry axis pointing to the vertical direction after vibration. For spheres, denser packing leads to more (positional) ordered structure. For ellipsoids, denser packing can either be more (global and local orientational) ordered or random packing, which implies it does not necessarily be ordered packed to obtain higher packing density. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:424 / 434
页数:11
相关论文
共 50 条
  • [1] DEM simulation on the packing of fine ellipsoids
    Gan, J. Q.
    Yu, A. B.
    Zhou, Z. Y.
    CHEMICAL ENGINEERING SCIENCE, 2016, 156 : 64 - 76
  • [2] Packing Ellipsoids with Overlap
    Uhler, Caroline
    Wright, Stephen J.
    SIAM REVIEW, 2013, 55 (04) : 671 - 706
  • [3] An experimental study of packing of ellipsoids under vibrations
    Li, C. X.
    Zou, R. P.
    Pinson, D.
    Yu, A. B.
    Zhou, Z. Y.
    POWDER TECHNOLOGY, 2020, 361 : 45 - 51
  • [4] Packing ellipsoids in an optimized cylinder
    Romanova, Tatiana
    Litvinchev, Igor
    Pankratov, Alexander
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 285 (02) : 429 - 443
  • [5] Packing ellipsoids by nonlinear optimization
    E. G. Birgin
    R. D. Lobato
    J. M. Martínez
    Journal of Global Optimization, 2016, 65 : 709 - 743
  • [6] Packing ellipsoids by nonlinear optimization
    Birgin, E. G.
    Lobato, R. D.
    Martinez, J. M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (04) : 709 - 743
  • [7] Algorithms of optimal ball packing into ellipsoids
    Lebedev, P. D.
    Lavrov, N. G.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2018, 52 : 59 - 74
  • [8] Packing of stiff rods on ellipsoids: Geometry
    Grossman, Doron
    Katzav, Eytan
    Sharon, Eran
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [9] Interparticle force analysis on the packing of fine ellipsoids
    Gan, J. Q.
    Zhou, Z. Y.
    Yu, A. B.
    POWDER TECHNOLOGY, 2017, 320 : 610 - 624
  • [10] PACKING DENSITY
    BELL, T
    IEEE SPECTRUM, 1992, 29 (10) : 11 - +