Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants

被引:69
|
作者
dos Santos Coelho, Flavia [1 ]
Ardisson, Jose Domingos [2 ]
Moura, Flavia C. C. [3 ]
Lago, Rochel M. [1 ]
Murad, Enver [1 ,4 ]
Fabris, Jose Domingos [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil
[2] CDTN, Lab Fis Aplicada, Belo Horizonte, MG, Brazil
[3] Univ Fed Ouro Preto, ICEB, Dept Quim, BR-35400000 Ouro Preto, MG, Brazil
[4] Bayer Landesamt Umvelt, D-95603 Marktredwitz, Germany
关键词
chromium reduction; iron metal; magnetite; mechanical alloying;
D O I
10.1016/j.chemosphere.2007.10.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We describe the use of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) species in aqueous medium. The composites were prepared by simple mechanical alloying of metallic iron and magnetite in different proportions, i.e. Fe(0) 25, 50, 75 and 90 wt%. While after 3 h of reaction pure Fe(0) and pure Fe3O4 showed only a low reduction efficiency of 15% and 25% Cr(VI) conversion, respectively, the composites, in particular Fe(0)(25 wt%)/Fe3O4, showed a remarkable activity with ca. 65% Cr(VI) conversion. Kinetic experiments showed a high reaction rate during the first 3 h, which subsequently decreased strongly, probably due to a pH increase from 6 to 8. Experiments with composites based on Fe(0)/alpha-Fe2O3, Fe(0)/gamma-Fe2O3 and Fe(0)/FeOOH showed very low activities, suggesting that Fe-oct(2+) in the magnetite structure plays an important role in the reaction. Scanning and high resolution electron microscopies and Mossbauer spectra (transmission and conversion electron Mossbauer spectroscopy) indicated that the mechanical alloying process promotes a strong interaction and interface between the metallic and oxide phases, with the Fe(0) particles completely covered by Fe3O4 particles. The high efficiency of the composite Fe(0)/Fe3O4 for Cr(VI) reduction is discussed in terms of a special mechanism where an electron is transferred from Fe(0) to magnetite to reduce Fe-oct(3+) to Fe-oct(2+), which is active for Cr(VI) reduction. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:90 / 96
页数:7
相关论文
共 50 条
  • [1] A study on the reduction behaviors of Cr(VI) on Fe3O4/PANI
    Li, Renjie
    Liu, Lifen
    Yang, Fenglin
    2013 INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL SCIENCE AND TECHNOLOGY (2013 ISEST), 2013, 18 : 522 - 527
  • [2] Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nano-composites for catalytic reduction of nitroaromatic compounds
    Tuo, Ya
    Liu, Guangfei
    Dong, Bin
    Zhou, Jiti
    Wang, Aijie
    Wang, Jing
    Jin, Ruofei
    Lv, Hong
    Dou, Zeou
    Huang, Wenyu
    SCIENTIFIC REPORTS, 2015, 5
  • [3] Combined Toxicity of an Environmental Remediation Residue, Magnetite Fe3O4 Nanoparticles/Cr(VI) Adduct
    Li Zhuan
    Liu Miao
    Chen Li Ke
    Li Guang Zhu
    BIOMEDICAL AND ENVIRONMENTAL SCIENCES, 2017, 30 (11) : 783 - 791
  • [4] Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid
    Tian, Xike
    Wang, Weiwei
    Tian, Na
    Zhou, Chaoxin
    Yang, Chao
    Komarneni, Sridhar
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 309 : 151 - 156
  • [5] CATHODIC REDUCTION POTENTIAL OF FE3O4 AND FLADE POTENTIAL OF IRON
    HICKLING, A
    ELECTROCHIMICA ACTA, 1973, 18 (09) : 635 - 637
  • [6] Rapid degradation of dyes in water by magnetic Fe~0/Fe3O4/graphene composites
    Shan Chong
    Guangming Zhang
    Huifang Tian
    He Zhao
    Journal of Environmental Sciences, 2016, 44 (06) : 148 - 157
  • [7] Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides
    Costa, Regina C. C.
    Moura, Flavia C. C.
    Ardisson, J. D.
    Fabris, J. D.
    Lago, R. M.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 83 (1-2) : 131 - 139
  • [8] Magnetic Sensing Potential of Fe3O4 Nanocubes Exceeds That of Fe3O4 Nanospheres
    Kolhatkar, Arati G.
    Chen, Yi-Ting
    Chinwangso, Pawilai
    Nekrashevich, Ivan
    Dannangoda, Gamage C.
    Singh, Ankit
    Jamison, Andrew C.
    Zenasni, Oussama
    Rusakova, Irene A.
    Martirosyan, Karen S.
    Litvinov, Dmitri
    Xu, Shoujun
    Willson, Richard C.
    Lee, T. Randall
    ACS OMEGA, 2017, 2 (11): : 8010 - 8019
  • [9] Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds
    Ya Tuo
    Guangfei Liu
    Bin Dong
    Jiti Zhou
    Aijie Wang
    Jing Wang
    Ruofei Jin
    Hong Lv
    Zeou Dou
    Wenyu Huang
    Scientific Reports, 5
  • [10] Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds
    Ya, Tuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252