Subspace clustering using a low-rank constrained autoencoder

被引:35
|
作者
Chen, Yuanyuan [1 ]
Zhang, Lei [1 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Sichuan, Peoples R China
基金
美国国家科学基金会;
关键词
Deep neural networks; Subspace clustering; Autoencoder; Low-rank representation; REPRESENTATIONS;
D O I
10.1016/j.ins.2017.09.047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of subspace clustering is affected by data representation. Data representation for subspace clustering maps data from the original space into another space with the property of better separability. Many data representation methods have been developed in recent years. Typical among them are low-rank representation (LRR) and an autoencoder. LRR is a linear representation method that captures the global structure of data with low rank constraint. Alternatively, an autoencoder nonlinearly maps data into a latent space using a neural network by minimizing the difference between the reconstruction and input. To combine the advantages of an LRR (globality) and autoencoder (self-supervision based locality), we propose a novel data representation method for subspace clustering. The proposed method, called low-rank constrained autoencoder (LRAE), forces the latent representation of the neural network to be of low rank, and the low-rank constraint is computed as a prior from the input space. One major advantage of the LRAE is that the learned data representation not only maintains the local features of the data, but also preserves the underlying low-rank global structure. Extensive experiments on several datasets for subspace clustering were conducted. They demonstrated that the proposed LRAE substantially outperformed state-of-the-art subspace clustering methods. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [1] Low-Rank Tensor Constrained Multiview Subspace Clustering
    Zhang, Changqing
    Fu, Huazhu
    Liu, Si
    Liu, Guangcan
    Cao, Xiaochun
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1582 - 1590
  • [2] Constrained Low-Rank Representation for Robust Subspace Clustering
    Wang, Jing
    Wang, Xiao
    Tian, Feng
    Liu, Chang Hong
    Yu, Hongchuan
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4534 - 4546
  • [3] Multiview Subspace Clustering Using Low-Rank Representation
    Chen, Jie
    Yang, Shengxiang
    Mao, Hua
    Fahy, Conor
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 12364 - 12378
  • [4] Subspace clustering using a symmetric low-rank representation
    Chen, Jie
    Mao, Hua
    Sang, Yongsheng
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2017, 127 : 46 - 57
  • [5] Deep Low-Rank Subspace Clustering
    Kheirandishfard, Mohsen
    Zohrizadeh, Fariba
    Kamangar, Farhad
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3767 - 3772
  • [6] Constrained Low-Rank Tensor Learning for Multi-View Subspace Clustering
    Zhang, Tao
    Wang, Bo
    Zhang, Huanhuan
    Zhao, Yu
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 49 - 54
  • [7] Multimodal sparse and low-rank subspace clustering
    Abavisani, Mahdi
    Patel, Vishal M.
    INFORMATION FUSION, 2018, 39 : 168 - 177
  • [8] Symmetric low-rank representation for subspace clustering
    Chen, Jie
    Zhang, Haixian
    Mao, Hua
    Sang, Yongsheng
    Yi, Zhang
    NEUROCOMPUTING, 2016, 173 : 1192 - 1202
  • [9] Low-Rank and Structured Sparse Subspace Clustering
    Zhang, Junjian
    Li, Chun-Guang
    Zhang, Honggang
    Guo, Jun
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [10] Low-Rank Sparse Subspace for Spectral Clustering
    Zhu, Xiaofeng
    Zhang, Shichao
    Li, Yonggang
    Zhang, Jilian
    Yang, Lifeng
    Fang, Yue
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (08) : 1532 - 1543