Sintering of ceramics for clay in situ resource utilization on Mars

被引:23
|
作者
Karl, David [1 ]
Kamutzki, Franz [1 ]
Lima, Pedro [2 ]
Gili, Albert [1 ]
Duminy, Thomas [1 ]
Zocca, Andrea [2 ]
Guenster, Jens [2 ]
Gurlo, Aleksander [1 ]
机构
[1] Tech Univ Berlin, Inst Werkstoffwissensch & Technol, Chair Adv Ceram Mat, Fachgebiet Keram Werkstoffe, Berlin, Germany
[2] Bundesanstalt Mat Forsch & Prafung BAM, Berlin, Germany
来源
OPEN CERAMICS | 2020年 / 3卷
关键词
Mars smectite; Clay ISRU; MGS-1 regolith simulant; Slurry additive manufacturing; Wet processing; Sintering; Simulated Mars atmosphere; In situ XRD; Martian pottery; Mars ceramics; Space pottery; Water absorption; Weibull analysis; THIN WATER FILMS; STRUCTURAL-PROPERTIES; SURFACE-PROPERTIES; MGO; NANOPARTICLES; SIZE; DENSIFICATION; MORPHOLOGY; STABILITY; POWDERS;
D O I
10.1016/j.oceram.2020.100008
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The sintering of wet processed Mars global simulant green bodies is explored. Green bodies shaped using slip casting, throwing on a potter's wheel and additive manufacturing, including material extrusion (robocasting) and layerwise slurry deposition (LSD) are sintered in terrestrial and simulated Mars atmosphere. A sintering schedule is developed using hot stage microscopy, water absorption, sintering shrinkage and sintering mass loss. Sintered parts are characterized in respect to their density, porosity, phase composition, microstructure and mechanical properties. Densification behavior for different green bodies was generally similar, enabling the fabrication of larger green bodies (tiles, cups, bowls) and parts with fines details (test cubes and cuneiform tables) with low water absorption. Sintered LSD discs had a bending strength between terracotta and typical porcelains with 57.5/ 53.3 MPa in terrestrial/simulated Mars atmosphere. Clay ISRU for sintered ceramics can be considered an eminently favorable construction technology for soft and hard ISRU on Mars.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Mars in situ resource utilization: a review
    Starr, Stanley O.
    Muscatello, Anthony C.
    PLANETARY AND SPACE SCIENCE, 2020, 182 (182)
  • [2] Mars In Situ Resource Utilization and Sulfur Concrete
    Rahim, A.
    Gulzar, A.
    Khan, A.
    Rehman, Z.
    EARTH AND SPACE 2021: SPACE EXPLORATION, UTILIZATION, ENGINEERING, AND CONSTRUCTION IN EXTREME ENVIRONMENTS, 2021, : 1231 - 1241
  • [3] Towards the colonization of Mars by in-situ resource utilization: Slip cast ceramics from Martian soil simulant
    Karl, David
    Kamutzki, Franz
    Zocca, Andrea
    Goerke, Oliver
    Guenster, Jens
    Gurlo, Aleksander
    PLOS ONE, 2018, 13 (10):
  • [4] MARS SAMPLE RETURN MISSION WITH IN-SITU RESOURCE UTILIZATION
    SRIDHAR, KR
    JOURNAL OF PROPULSION AND POWER, 1995, 11 (06) : 1356 - 1362
  • [5] Choice of Microbial System for In-Situ Resource Utilization on Mars
    Averesch, Nils Jonathan Helmuth
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2021, 8
  • [6] First in-situ resource utilization payload heads to Mars
    Sibille, Laurent
    Meyen, Forrest
    AEROSPACE AMERICA, 2020, 58 (11) : 70 - 70
  • [7] Simulating oxygen production on Mars for the Mars Oxygen In-Situ Resource Utilization Experiment
    Hinterman, Eric
    Hoffman, Jeffrey A.
    ACTA ASTRONAUTICA, 2020, 170 : 678 - 685
  • [8] Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies
    Karl, David
    Duminy, Thomas
    Lima, Pedro
    Kamutzki, Franz
    Gili, Albert
    Zocca, Andrea
    Guenster, Jens
    Gurlo, Aleksander
    ACTA ASTRONAUTICA, 2020, 174 : 241 - 253
  • [9] Preliminary system analysis of in situ resource utilization for Mars human exploration
    Rapp, Donald
    Andringa, Jason
    Easter, Robert
    Smith, Jeffrey H.
    Wilson, Thomas J.
    Clark, D. Larry
    Payne, Kevin
    2005 IEEE Aerospace Conference, Vols 1-4, 2005, : 319 - 338
  • [10] A comparison of in situ resource utilization options for the first human Mars missions
    Pauly, K
    PROCEEDINGS OF THE FOUNDING CONVENTION OF THE MARS SOCIETY, PT II, 1999, : 681 - 694