Reflection of elementary embedding axioms on the L[Vλ+1] hierarchy

被引:12
|
作者
Laver, R [1 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
set theory; large cardinals; elementary embeddings;
D O I
10.1016/S0168-0072(00)00035-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Say that the property Phi(lambda) of a cardinal lambda strongly implies the property Psi(lambda). If and only if for every lambda, Phi(lambda) implies that Psi(lambda) and that for some lambda' < <lambda>, Psi(lambda'). Frequently in the hierarchy of large cardinal axioms, stronger axioms strongly imply weaker ones. Some strong implications are proved between axioms of the form "there is an elementary embedding j : L alpha [Vlambda +1] --> L-alpha[Vlambda +1] with lambda = sup(n)j(n)(cr(j))". (C) 2001 Elsevier Science B.V. All rights reserved. AMS classification: 03E55.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条