Global Encoding for Abstractive Summarization

被引:0
|
作者
Lin, Junyang [1 ]
Sun, Xu
Ma, Shuming
Su, Qi
机构
[1] Peking Univ, Sch EECS, MOE Key Lab Computat Linguist, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In neural abstractive summarization, the conventional sequence-to-sequence (seq2seq) model often suffers from repetition and semantic irrelevance. To tackle the problem, we propose a global encoding framework, which controls the information flow from the encoder to the decoder based on the global information of the source context. It consists of a convolutional gated unit to perform global encoding to improve the representations of the source-side information. Evaluations on the LCSTS and the English Gigaword both demonstrate that our model outperforms the baseline models, and the analysis shows that our model is capable of generating summary of higher quality and reducing repetition(1).
引用
收藏
页码:163 / 169
页数:7
相关论文
共 50 条
  • [1] Selective Encoding for Abstractive Sentence Summarization
    Zhou, Qingyu
    Yang, Nan
    Wei, Furu
    Zhou, Ming
    [J]. PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 1095 - 1104
  • [2] Dual Encoding for Abstractive Text Summarization
    Yao, Kaichun
    Zhang, Libo
    Du, Dawei
    Luo, Tiejian
    Tao, Lili
    Wu, Yanjun
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (03) : 985 - 996
  • [3] Highlighted Word Encoding for Abstractive Text Summarization
    Lal, Daisy Monika
    Singh, Krishna Pratap
    Tiwary, Uma Shanker
    [J]. INTELLIGENT HUMAN COMPUTER INTERACTION (IHCI 2019), 2020, 11886 : 77 - 86
  • [4] Neural abstractive summarization fusing by global generative topics
    Yang Gao
    Yang Wang
    Luyang Liu
    Yidi Guo
    Heyan Huang
    [J]. Neural Computing and Applications, 2020, 32 : 5049 - 5058
  • [5] Neural abstractive summarization fusing by global generative topics
    Gao, Yang
    Wang, Yang
    Liu, Luyang
    Guo, Yidi
    Huang, Heyan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (09): : 5049 - 5058
  • [6] BiSET: Bi-directional Selective Encoding with Template for Abstractive Summarization
    Wang, Kai
    Quan, Xiaojun
    Wang, Rui
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 2153 - 2162
  • [7] Abstractive Summarization with the Aid of Extractive Summarization
    Chen, Yangbin
    Ma, Yun
    Mao, Xudong
    Li, Qing
    [J]. WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 3 - 15
  • [8] Global-aware Beam Search for Neural Abstractive Summarization
    Ma, Ye
    Lan, Zixun
    Zong, Lu
    Huang, Kaizhu
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [9] Controllable Abstractive Summarization
    Fan, Angela
    Grangier, David
    Auli, Michael
    [J]. NEURAL MACHINE TRANSLATION AND GENERATION, 2018, : 45 - 54
  • [10] Multi-level shared-weight encoding for abstractive sentence summarization
    Lal, Daisy Monika
    Singh, Krishna Pratap
    Tiwary, Uma Shanker
    [J]. Neural Computing and Applications, 2022, 34 (04) : 2965 - 2981