A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms

被引:2
|
作者
Mishra, S. [1 ]
Mishra, D. R. [2 ]
机构
[1] Dow Agrosci LLC, Indianapolis, IN 46268 USA
[2] Univ Georgia, Dept Geog, Athens, GA 30602 USA
来源
ENVIRONMENTAL RESEARCH LETTERS | 2014年 / 9卷 / 11期
关键词
cyanobacteria; phycocyanin; hypersoectral remote sensing; water quality; algal blooms; TURBID PRODUCTIVE WATERS; CHLOROPHYLL-A; REFLECTANCE; COASTAL; COLOR;
D O I
10.1088/1748-9326/9/11/114003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present a novel three-band algorithm (PC3) to retrieve phycocyanin (PC) pigment concentration in cyanobacteria laden inland waters. The water sample and remote sensing reflectance data used for PC3 calibration and validation were acquired from highly turbid productive catfish aquaculture ponds. Since the characteristic PC absorption feature at 620 nm is contaminated with residual chlorophyll-a (Chl-a) absorption, we propose a coefficient (psi) for isolating the PC absorption component at 620 nm. Results show that inclusion of the model coefficient relating Chl-a absorption at 620 nm-665 nm enables PC3 to compensate for the confounding effect of Chl-a at the PC absorption band and considerably increases the accuracy of the PC prediction algorithm. In the current dataset, PC3 produced the lowest mean relative error of prediction among all PC algorithms considered in this research. Moreover, PC3 eliminates the nonlinear sensitivity issue of PC algorithms particularly at high PC range (>100 mu g L-1). Therefore, introduction of PC3 will have an immediate positive impact on studies monitoring inland and coastal cyanobacterial harmful algal blooms.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Monitoring cyanobacterial blooms by satellite remote sensing
    Kutser, T
    Metsamaa, L
    Strömbeck, N
    Vahtmäe, E
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2006, 67 (1-2) : 303 - 312
  • [2] A method for quantifying the number of US lakes with cyanobacterial harmful algal blooms using satellite remote sensing
    Coffer, Megan M. A.
    Schaeffer, Blake A.
    Urquhart, Erin A.
    Darling, John A.
    Salls, Wilson B.
    [J]. REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY XV, 2018, 10767
  • [3] Remote sensing of cyanobacterial blooms in Lake Champlain, USA
    Trescott, Adam
    Isenstein, Elizabeth
    Park, Mi-Hyun
    [J]. WATER SCIENCE AND TECHNOLOGY-WATER SUPPLY, 2013, 13 (05): : 1402 - 1409
  • [4] Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water
    Simis, SGH
    Peters, SWM
    Gons, HJ
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2005, 50 (01) : 237 - 245
  • [5] Remote Sensing of Algal Blooms: An Overview with Case Studies
    Klemas, Victor
    [J]. JOURNAL OF COASTAL RESEARCH, 2012, 28 (1A) : 34 - 43
  • [6] Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters
    Kudela, Raphael M.
    Palacios, Sherry L.
    Austerberry, David C.
    Accorsi, Emma K.
    Guild, Liane S.
    Torres-Perez, Juan
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 167 : 196 - 205
  • [7] Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing
    Kutser, T
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (06) : 2179 - 2189
  • [8] Development of a remote sensing algorithm for cyanobacterial phycocyanin pigment in the Baltic Sea using neural network approach
    Riha, Stefan
    Krawczyk, Harald
    [J]. REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2011, 2011, 8175
  • [9] A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters
    Shanmugam, Palanisamy
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
  • [10] Remote sensing for mapping algal blooms in freshwater lakes: a review
    Silvia Beatriz Alves Rolim
    Bijeesh Kozhikkodan Veettil
    Antonio Pedro Vieiro
    Anita Baldissera Kessler
    Clóvis Gonzatti
    [J]. Environmental Science and Pollution Research, 2023, 30 : 19602 - 19616