Using MERIS fused images for land-cover mapping and vegetation status assessment in heterogeneous landscapes

被引:23
|
作者
Zurita-Milla, R. [1 ,2 ]
Clevers, J. G. P. W. [1 ]
Van Gijsel, J. A. E. [3 ]
Schaepman, M. E. [1 ]
机构
[1] Wageningen Univ, Ctr Geoinformat, NL-6700 AA Wageningen, Netherlands
[2] Univ Twente, Dept Geoinformat Proc, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AA Enschede, Netherlands
[3] Natl Inst Publ Hlth & Environm RIVM, Ctr Environm Monitoring, NL-3720 BA Bilthoven, Netherlands
关键词
SPATIAL-RESOLUTION IMPROVEMENT; CLOUD-COVER; DATA FUSION; NDVI DATA; SENSOR; PRODUCTIVITY; ACQUISITION; INDEXES; FAPAR; TM;
D O I
10.1080/01431160903505286
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this paper we evaluate the potential of ENVISAT-Medium Resolution Imaging Spectrometer (MERIS) fused images for land-cover mapping and vegetation status assessment in heterogeneous landscapes. A series of MERIS fused images (15 spectral bands; 25 m pixel size) is created using the linear mixing model and a Landsat Thematic Mapper (TM) image acquired over the Netherlands. First, the fused images are classified to produce a map of the eight main land-cover types of the Netherlands. Subsequently, the maps are validated using the Dutch land-cover/land-use database as a reference. Then, the fused image with the highest overall classification accuracy is selected as the best fused image. Finally, the best fused image is used to compute three vegetation indices: the normalized difference vegetation index (NDVI) and two indices specifically designed to monitor vegetation status using MERIS data: the MERIS terrestrial chlorophyll index (MTCI) and the MERIS global vegetation index (MGVI). Results indicate that the selected data fusion approach is able to downscale MERIS data to a Landsat-like spatial resolution. The spectral information in the fused images originates fully from MERIS and is not influenced by the TM data. Classification results for the TM and for the best fused image are similar and, when comparing spectrally similar images (i.e. TM with no short-wave infrared bands), the results of the fused image outperform those of TM. With respect to the vegetation indices, a good correlation was found between the NDVI computed from TM and from the best fused image (in spite of the spectral differences between these two sensors). In addition, results show the potential of using MERIS vegetation indices computed from fused images to monitor individual fields. This is not possible using the original MERIS full resolution image. Therefore, we conclude that MERIS-TM fused images are very useful to map heterogeneous landscapes.
引用
收藏
页码:973 / 991
页数:19
相关论文
共 50 条
  • [1] Multitemporal MERIS images for land-cover mapping at a national scale: a case study of Portugal
    Carrao, H.
    Araujo, A.
    Goncalves, P.
    Caetano, M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (08) : 2063 - 2082
  • [2] Multitemporal Unmixing of Medium-Spatial-Resolution Satellite Images: A Case Study Using MERIS Images for Land-Cover Mapping
    Zurita-Milla, Raul
    Gomez-Chova, Luis
    Guanter, Luis
    Clevers, Jan G. P. W.
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11): : 4308 - 4317
  • [3] Using MERIS on Envisat for land cover mapping in the Netherlands
    Clevers, J. G. P. W.
    Schaepman, M. E.
    Mucher, C. A.
    De Wit, A. J. W.
    Zurita-Milla, R.
    Bartholomeus, H. M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (3-4) : 637 - 652
  • [4] The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing
    Moody, A
    Woodcock, CE
    [J]. LANDSCAPE ECOLOGY, 1995, 10 (06) : 363 - 379
  • [5] Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units
    Cingolani, AM
    Renison, D
    Zak, MR
    Cabido, MR
    [J]. REMOTE SENSING OF ENVIRONMENT, 2004, 92 (01) : 84 - 97
  • [6] Comparing AWIFS and MERIS images for land use-land cover mapping in Spain
    Gonzalez-Alonso, F.
    Kaiser, S.
    Merino, S.
    Huesca, M.
    Roldan, A.
    Cuevas, J. M.
    Ventura, G.
    [J]. REVISTA DE TELEDETECCION, 2008, (30): : 85 - 91
  • [7] An operational approach for annual land cover mapping at the national scale with MERIS images
    Araujo, A.
    Carrao, H.
    Caetano, M.
    [J]. REMOTE SENSING FOR A CHANGING EUROPE, 2009, : 602 - 609
  • [8] Land cover classification using multi-temporal MERIS vegetation indices
    Dash, J.
    Mathur, A.
    Foody, G. M.
    Curran, P. J.
    Chipman, J. W.
    Lillesand, T. M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (06) : 1137 - 1159
  • [9] Application of CORINE land-cover mapping to estimate carbon stored in the vegetation of Ireland
    Cruickshank, MM
    Tomlinson, RW
    Trew, S
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2000, 58 (04) : 269 - 287
  • [10] Land-cover Classification in SAR Images using Dictionary Learning
    Aktas, Gizem
    Bak, Cagdas
    Nar, Fatih
    Sen, Nigar
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XV, 2015, 9642