ITERATIVE ALGORITHMS FOR FIXED POINT PROBLEMS OF ASYMPTOTICALLY PSEUDOCONTRACTIVE OPERATORS AND THE PROXIMAL SPLIT FEASIBILITY PROBLEMS

被引:0
|
作者
Yao, Zhangsong [1 ]
Hsun-Chih Kuo [2 ]
Ching-Feng Wen [3 ,4 ,5 ]
机构
[1] Nanjing Xiaozhuang Univ, Sch Informat Engn, Nanjing 211171, Peoples R China
[2] Natl Kaohsiung Univ Sci & Technol, Dept Risk Management & Insurance, Kaohsiung, Taiwan
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80708, Taiwan
[4] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 80708, Taiwan
[5] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 80708, Taiwan
关键词
Fixed point; asymptotically pseudocontractive operator; proximal split feasibility problem; proximal operator; VARIATIONAL INEQUALITY; PROJECTION METHODS; STRONG-CONVERGENCE; REGULAR FUNCTIONS; MAPPINGS; KNOWLEDGE; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate iterative algorithms for solving fixed point problems and the proximal split feasibility problems. With the help of fixed point techniques, we suggest an iterative algorithm for finding an intersection of fixed point problem of an L-Lipschitz asymptotically pseudocontractive operator and the proximal split feasibility problem. Under some mild assumptions, we show that the proposed algorithm has strong convergence.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 50 条
  • [1] Iterative algorithms for fixed point problems of asymptotically pseudocontractive operators and the proximal split feasibility problems
    Yao, Zhangsong
    Kuo, Hsun-Chih
    Wen, Ching-Feng
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (04): : 147 - 158
  • [2] Split equality fixed point problems for asymptotically quasi-pseudocontractive operators
    Wang, Yaqin
    Song, Yanlai
    Fang, Xiaoli
    Kim, Tae-Hwa
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2020, 36 (01) : 147 - 157
  • [3] An iterative method for solving proximal split feasibility problems and fixed point problems
    Wongvisarut Khuangsatung
    Pachara Jailoka
    Suthep Suantai
    [J]. Computational and Applied Mathematics, 2019, 38
  • [4] An iterative method for solving proximal split feasibility problems and fixed point problems
    Khuangsatung, Wongvisarut
    Jailoka, Pachara
    Suantai, Suthep
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [6] Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators
    Yao, Yonghong
    Postolache, Mihai
    Yao, Jen-Chih
    [J]. MATHEMATICS, 2019, 7 (12)
  • [7] FIXED POINT ALGORITHMS FOR SPLIT FEASIBILITY PROBLEMS
    Al-Mazrooei, A. E.
    Latif, A.
    Qin, X.
    Yao, J. C.
    [J]. FIXED POINT THEORY, 2019, 20 (01): : 245 - 254
  • [8] Convergence analysis for proximal split feasibility problems and fixed point problems
    Shehu Y.
    Ogbuisi F.U.
    [J]. Journal of Applied Mathematics and Computing, 2015, 48 (1-2) : 221 - 239
  • [9] A GENERAL ITERATIVE ALGORITHM FOR SPLIT VARIATIONAL INCLUSION PROBLEMS AND FIXED POINT PROBLEMS OF A PSEUDOCONTRACTIVE MAPPING
    Jung, Jong Soo
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [10] A GENERAL ITERATIVE ALGORITHM FOR SPLIT VARIATIONAL INCLUSION PROBLEMS AND FIXED POINT PROBLEMS OF A PSEUDOCONTRACTIVE MAPPING
    Jung, Jong Soo
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022