Probabilistic Planning with Preferences over Temporal Goals

被引:3
|
作者
Fu, Jie [1 ]
机构
[1] Worcester Polytech Inst, Dept Robot Engn, Worcester, MA 01520 USA
关键词
D O I
10.23919/ACC50511.2021.9483348
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a formal language for specifying qualitative preferences over temporal goals and a preference-based planning method in stochastic systems. Using automata-theoretic modeling, the proposed specification allows us to express preferences over different sets of outcomes, where each outcome describes a set of temporal sequences of subgoals. We define the value of preference satisfaction given a stochastic process over possible outcomes and develop an algorithm for time-constrained probabilistic planning in labeled Markov decision processes where an agent aims to maximally satisfy its preference formula within a pre-defined finite time duration. We present experimental results using a stochastic gridworld example and discuss possible extensions of the proposed preference model.
引用
收藏
页码:4854 / 4859
页数:6
相关论文
共 50 条
  • [1] Probabilistic Planning with Partially Ordered Preferences over Temporal Goals
    Rahmani, Hazhar
    Kulkami, Abhishek N.
    Fu, Jie
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 5702 - 5708
  • [2] Probabilistic Planning with Prioritized Preferences over Temporal Logic Objectives
    Li, Lening
    Rahmani, Hazhar
    Fu, Jie
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 189 - 198
  • [3] Robustness in Probabilistic Temporal Planning
    Brooks, Jeb
    Reed, Emilia
    Gruver, Alexander
    Boerkoel, James C., Jr.
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3239 - 3246
  • [4] Probabilistic planning with clear preferences on missing information
    Likhachev, Maxim
    Stentz, Anthony
    [J]. ARTIFICIAL INTELLIGENCE, 2009, 173 (5-6) : 696 - 721
  • [5] Motion Planning with Hybrid Dynamics and Temporal Goals
    Bhatia, Amit
    Kavraki, Lydia E.
    Vardi, Moshe Y.
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 1108 - 1115
  • [6] Supporting Hard Queries over Probabilistic Preferences
    Ping, Haoyue
    Stoyanovich, Julia
    Kimelfeld, Benny
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (07): : 1134 - 1146
  • [7] Robust Execution Strategies for Probabilistic Temporal Planning
    Dietrich, Sam
    Lund, Kyle
    Boerkoel, James C., Jr.
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 4206 - 4207
  • [8] Planning with rich goals, preferences and procedural operators via reformulation
    Baier, Jorge A.
    [J]. AI COMMUNICATIONS, 2011, 24 (04) : 347 - 348
  • [9] Over-Subscription Planning with Numeric Goals
    Benton, J.
    Do, Minh B.
    Kambhampati, Subbarao
    [J]. 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1207 - 1213
  • [10] Asymptotically Optimal Stochastic Motion Planning with Temporal Goals
    Luna, Ryan
    Lahijanian, Morteza
    Moll, Mark
    Kavraki, Lydia E.
    [J]. ALGORITHMIC FOUNDATIONS OF ROBOTICS XI, 2015, 107 : 335 - 352