A Framework for Content-based Retrieval of EEG with Applications to Neuroscience and Beyond

被引:0
|
作者
Su, Kyungmin [1 ]
Robbins, Kay A. [1 ]
机构
[1] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a prototype framework for content-based EEG retrieval (CBER). Like content-based image retrieval, the proposed framework retrieves EEG segments similar to the query EEG segment in a large database. Such retrieval of EEG can be used to assist data mining of brain signals by allowing researchers to understand the association between brain patterns, responses, and the environment. Retrieval might also be used to enhance the accuracy of Brain Computer Interface (BCI) systems by providing related samples for training. We present key components of CBER and explain how to handle the distinctive characteristics of EEG. To demonstrate the feasibility of the framework, we implemented a simple EEG database of about 37,000 samples from more than 100 subjects. We ran two retrieval scenarios with a set of EEG features and evaluation metrics. The results of finding similar subjects clearly demonstrate the potential of CBER in many EEG applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A framework for interactive content-based image retrieval
    Ghazanfar Monir, S. M.
    Hasnain, S. K.
    PROCEEDINGS OF THE INMIC 2005: 9TH INTERNATIONAL MULTITOPIC CONFERENCE - PROCEEDINGS, 2005, : 630 - 633
  • [2] A classification framework for content-based image retrieval
    Aksoy, S
    Haralick, RM
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 503 - 506
  • [3] A Bayesian framework for content-based indexing and retrieval
    Vasconcelos, N
    Lippman, A
    DCC '98 - DATA COMPRESSION CONFERENCE, 1998, : 580 - 580
  • [4] On benchmarking content-based image retrieval applications
    Zuo, Yuanyuan
    Yuan, Jinhui
    Ding, Dayong
    Wang, Dong
    Zhang, Bo
    INTERNET IMAGING VII, 2006, 6061
  • [5] Content-based image retrieval in medical applications
    Lehmann, TM
    Güld, MO
    Thies, O
    Fisher, B
    Spitzer, K
    Keysers, D
    Ney, H
    Kohnen, M
    Schubert, H
    Wein, BB
    METHODS OF INFORMATION IN MEDICINE, 2004, 43 (04) : 354 - 361
  • [6] Generic content-based audio indexing and retrieval framework
    Kiranyaz, S.
    Gabbouj, M.
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2006, 153 (03): : 285 - 297
  • [7] An active learning framework for content-based information retrieval
    Zhang, C
    Chen, TS
    IEEE TRANSACTIONS ON MULTIMEDIA, 2002, 4 (02) : 260 - 268
  • [8] MUVIS: A content-based multimedia endexing and retrieval framework
    Kiranyaz, S
    Caglar, K
    Guldogan, E
    Guldogan, C
    Gabbouj, M
    SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 1 - 8
  • [9] A genetic programming framework for content-based image retrieval
    Torres, Ricardo da S.
    Falcao, Alexandre X.
    Goncalves, Marcos A.
    Papa, Joao P.
    Zhang, Baoping
    Fan, Weiguo
    Fox, Edward A.
    PATTERN RECOGNITION, 2009, 42 (02) : 283 - 292
  • [10] Research and Improvement of Content-Based Image Retrieval Framework
    Hou, Yong
    Wang, Qingjun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (12)