Colloidal methods for the fabrication of carbon nanotube-manganese dioxide and carbon nanotube-polypyrrole composites using bile acids

被引:23
|
作者
Ata, M. S. [1 ]
Zhitomirsky, I. [1 ]
机构
[1] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bile acid; Dispersant; Electrophoretic deposition; Composite; Carbon nanotube; Manganese dioxide; Polypyrrole; Supercapacitor; ELECTROPHORETIC DEPOSITION; SODIUM DEOXYCHOLATE; SOLAR-CELLS; CHOLATE; BEHAVIOR; DYE; PH;
D O I
10.1016/j.jcis.2015.05.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nature inspired strategies have been developed for the colloidal processing of advanced composites for supercapacitor applications. New approach was based on the use of commercially available bile acid salts, such as sodium cholate (ChNa) and taurocholic acid sodium salt (TChNa). It was demonstrated that cholic acid (ChH) films can be obtained by electrophoretic deposition (EPD) from ChNa solutions. The analysis of deposition yield, quartz crystal microbalance and cyclic voltammetry data provided an insight into the anodic deposition mechanism. The outstanding suspension stability of multiwalled carbon nanotubes (MWCNT), achieved using bile acids as anionic dispersants, allowed the fabrication of MWCNT films by EPD. The use of ChNa for EPD offered advantages of binding and film forming properties of this material. Composite MnO2-MWCNT films, prepared using ChNa as a dispersant and film forming agent for EPD, showed promising capacitive behavior. In another colloidal strategy, TChNa was used as a dispersant for MWCNT for the fabrication of polypyrrole (PPy) coated MWCNT. The use of PPy coated MWCNT allowed the fabrication of electrodes with high active mass loading, high capacitance and excellent capacitance retention at high charge-discharge rates. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [1] Spectroscopic Characterization of Carbon Nanotube-Polypyrrole Composites
    Inoue, Fabiana
    Ando, Romulo A.
    Izumi, Celly M. S.
    Corio, Paola
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (31): : 18240 - 18248
  • [2] Synthesis and properties of carbon nanotube-polypyrrole composites
    Fan, JH
    Wan, MX
    Zhu, DB
    Chang, BH
    Pan, ZW
    Xie, SS
    SYNTHETIC METALS, 1999, 102 (1-3) : 1266 - 1267
  • [3] Magnetoreresistance of carbon nanotube-polypyrrole composite yarns
    Ghanbari, R.
    Ghorbani, S. R.
    Arabi, H.
    Foroughi, J.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2018, 548 : 78 - 81
  • [5] Doping and electrochemical capacitance of carbon nanotube-polypyrrole composite films
    Hughes, M
    Chen, GZ
    Shaffer, MSP
    Fray, DJ
    Windle, AH
    NANOPHASE AND NANOCOMPOSITE MATERIALS IV, 2002, 703 : 553 - 558
  • [6] Electrophoretic deposition of manganese dioxide-carbon nanotube composites
    Li, J.
    Zhitomirsky, I.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (07) : 3452 - 3459
  • [7] Carbon Nanotube-Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials
    Singu, Bal Sydulu
    Goda, Emad S.
    Yoon, Kuk Ro
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 97 : 239 - 249
  • [8] Carbon nanotube and polypyrrole composites: Coating and doping
    Chen, GZ
    Shaffer, MSP
    Coleby, D
    Dixon, G
    Zhou, WZ
    Fray, DJ
    Windle, AH
    ADVANCED MATERIALS, 2000, 12 (07) : 522 - +
  • [9] Temperature dependent switching of magnetoresistance in multiwall carbon nanotube-polypyrrole composite fibrils
    Rani, Reena
    Sharma, Meenu
    Rani, Sonam
    Shankar, Aditi
    Prasad, V.
    Boi, Filippo S.
    Sameera, I.
    Bhatia, Ravi
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (22)
  • [10] Electrochemical synthesis of polypyrrole/carbon nanotube nanoscale composites using well-aligned carbon nanotube arrays
    J.H. Chen
    Z.P. Huang
    D.Z. Wang
    S.X. Yang
    J.G. Wen
    Z.F. Ren
    Applied Physics A, 2001, 73 : 129 - 131