Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration

被引:17
|
作者
Furlani, Franco [1 ]
Montanari, Margherita [1 ]
Sangiorgi, Nicola [1 ]
Saracino, Emanuela [2 ]
Campodoni, Elisabetta [1 ]
Sanson, Alessandra [1 ]
Benfenati, Valentina [2 ]
Tampieri, Anna [1 ]
Panseri, Silvia [1 ]
Sandri, Monica [1 ]
机构
[1] Natl Res Council Italy, ISTEC CNR, Inst Sci & Technol Ceram, Via Granarolo 64, I-48018 Parma, RA, Italy
[2] Natl Res Council Italy, Inst Organ Synth & Photoreact ISOF CNR, Via Gobetti 101, I-40129 Bologna, Italy
关键词
CONDUCTIVE HYDROGEL; PHYSICAL-PROPERTIES; SODIUM ALGINATE; DRUG-DELIVERY; CROSS-LINKING; FILMS; DIFFERENTIATION; CELLS; COLLAGEN; MATRIX;
D O I
10.1039/d2bm00116k
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
This work describes the development of electroconductive hydrogels as injectable matrices for neural tissue regeneration by exploiting a biocompatible conductive polymer - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) - combined with a biomimetic polymer network made of gelatin. Our approach involved also genipin - a natural cross-linking agent - to promote gelation of gelatin networks embedding PEDOT:PSS. The achieved results suggest that physical-chemical properties of the resulting hydrogels, like impedance, gelation time, mechanical properties, swelling and degradation in physiological conditions, can be finely tuned by the amount of PEDOT:PSS and genipin used in the formulation. Furthermore, the presence of PEDOT:PSS (i) enhances the electrical conductivity, (ii) improves the shear modulus of the resulting hydrogels though (iii) partially impairing their resistance to shear deformation, (iv) reduces gelation time and (v) reduces their swelling ability in physiological medium. Additionally, the resulting electroconductive hydrogels demonstrate enhanced adhesion and growth of primary rat cortical astrocytes. Given the permissive interaction of hydrogels with primary astrocytes, the presented biomimetic, electroconductive and injectable hydrogels display potential applications as minimally invasive systems for neurological therapies and damaged brain tissue repair.
引用
收藏
页码:2040 / 2053
页数:14
相关论文
共 45 条
  • [1] Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration
    Furlani, Franco
    Campodoni, Elisabetta
    Sangiorgi, Nicola
    Montesi, Monica
    Sanson, Alessandra
    Sandri, Monica
    Panseri, Silvia
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 224 : 266 - 280
  • [2] Electroconductive cardiac patch based on bioactive PEDOT:PSS hydrogels
    Sauvage, Erwan
    Matta, Justin
    Dang, Cat-Thy
    Fan, Jiaxin
    Cruzado, Graziele
    Cicoira, Fabio
    Merle, Geraldine
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2024, 112 (10) : 1817 - 1826
  • [3] Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties
    Spencer, Andrew R.
    Primbetova, Asel
    Koppes, Abigail N.
    Koppes, Ryan A.
    Fenniri, Hicham
    Annabi, Nasim
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (05): : 1558 - +
  • [4] Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application
    Testore, Daniele
    Zoso, Alice
    Kortaberria, Galder
    Sangermano, Marco
    Chiono, Valeria
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [5] ELECTROCONDUCTIVE PHOTO- CURABLE PEGDA-GELATIN/PEDOT:PSS HYDROGELS FOR PROSPECTIVE CARDIAC TISSUE ENGINEERING APPLICATION
    Testore, Daniele
    Zoso, Alice
    Kortaberria, Galder
    Sangermano, Marco
    Chiono, Valeria
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1016 - 1017
  • [6] Mussel-inspired polydopamine decorated silane modified-electroconductive gelatin-PEDOT:PSS scaffolds for bone regeneration
    Adler, Catalina
    Monavari, Mahshid
    Abraham, Gustavo A.
    Boccaccini, Aldo R.
    Ghorbani, Farnaz
    RSC ADVANCES, 2023, 13 (23) : 15960 - 15974
  • [7] Adhesive Hydrogels for Maxillofacial Tissue Regeneration Using Minimally Invasive Procedures
    Salzlechner, Christoph
    Haghighi, Tabasom
    Huebscher, Isabella
    Walther, Anders Runge
    Schell, Sophie
    Gardner, Alexander
    Undt, Gerhard
    da Silva, Ricardo M. P.
    Dreiss, Cecile A.
    Fan, Kathleen
    Gentleman, Eileen
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (04)
  • [8] Application of minimally invasive injectable conductive hydrogels as stimulating scaffolds for myocardial tissue engineering
    Ketabat, Farinaz
    Khorshidi, Sajedeh
    Karkhaneh, Akbar
    POLYMER INTERNATIONAL, 2018, 67 (08) : 975 - 982
  • [9] Shape memory injectable cryogel based on carboxymethyl chitosan/gelatin for minimally invasive tissue engineering: In vitro and in vivo assays
    Olov, Nafiseh
    Mirzadeh, Hamid
    Moradi, Roshanak
    Rajabi, Sarah
    Bagheri-Khoulenjani, Shadab
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2022, 110 (11) : 2438 - 2451
  • [10] Bioinspired, injectable, tissue-adhesive and antibacterial hydrogel for multiple tissue regeneration by minimally invasive therapy
    Zhou, Feifei
    Yang, Yuan
    Zhang, Wenjing
    Liu, Shuyu
    Shaikh, Atik Badshah
    Yang, Lei
    Lai, Yuxiao
    Ouyang, Hongwei
    Zhu, Weimin
    APPLIED MATERIALS TODAY, 2022, 26