Automated pipelines for spectroscopic analysis

被引:5
|
作者
Allende Prieto, C. [1 ,2 ]
机构
[1] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain
[2] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain
关键词
catalogs; methods: data analysis; surveys; techniques: spectroscopic; SDSS OPTICAL SPECTROSCOPY; VELOCITY EXPERIMENT RAVE; DIGITAL SKY SURVEY; GAIA-ESO SURVEY; ATMOSPHERIC PARAMETERS; STARS; ABUNDANCES; TELESCOPE; SPECTRA; SEGUE;
D O I
10.1002/asna.201612382
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Gaia mission will have a profound impact on our understanding of the structure and dynamics of the Milky Way. Gaia is providing an exhaustive census of stellar parallaxes, proper motions, positions, colors and radial velocities, but also leaves some glaring holes in an otherwise complete data set. The radial velocities measured with the on-board high-resolution spectrograph will only reach some 10% of the full sample of stars with astrometry and photometry from the mission, and detailed chemical information will be obtained for less than 1%. Teams all over the world are organizing large-scale projects to provide complementary radial velocities and chemistry, since this can now be done very efficiently from the ground thanks to large and mid-size telescopes with a wide field-of-view and multi-object spectrographs. As a result, automated data processing is taking an ever increasing relevance, and the concept is applying to many more areas, from targeting to analysis. In this paper, I provide a quick overview of recent, ongoing, and upcoming spectroscopic surveys, and the strategies adopted in their automated analysis pipelines. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:837 / 843
页数:7
相关论文
共 50 条
  • [1] VolPy: Automated and scalable analysis pipelines for voltage imaging datasets
    Cai, Changjia
    Friedrich, Johannes
    Singh, Amrita
    Eybposh, M. Hossein
    Pnevmatikakis, Eftychios A.
    Podgorski, Kaspar
    Giovannucci, Andrea
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (04)
  • [2] Automated Spectral Reduction Pipelines
    Smith, Robert J.
    Piascik, Andrzej S.
    Steele, Lain A.
    Barnsley, Robert M.
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY IV, 2016, 9913
  • [3] ADAP: A new software for automated design and structural analysis of plastic pipelines
    Farshad, M
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2003, 16 (02) : 171 - 181
  • [4] Automated Mapping for Underground Pipelines: An Overview
    Yatim, N. M.
    Shauri, R. L. A.
    Buniyamin, N.
    2014 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND SYSTEM ENGINEERING (ICEESE), 2014, : 77 - 82
  • [5] NFTest: automated testing of Nextflow pipelines
    Patel, Yash
    Zhu, Chenghao
    Yamaguchi, Takafumi N.
    Bugh, Yuan Zhe
    Tian, Mao
    Holmes, Aaron
    Fitz-Gibbon, Sorel T.
    Boutros, Paul C.
    BIOINFORMATICS, 2024, 40 (02)
  • [6] AUTOMATED SCHEDULING SYSTEM FOR PIPELINES.
    Baxter, Wayne
    Gopalani, Anwar
    Murray, Edmond
    Oil and Gas Journal, 1981, 79 (39): : 323 - 325
  • [7] Andy’s Algorithms: new automated digital image analysis pipelines for FIJI
    Andrew M. K. Law
    Julia X. M. Yin
    Lesley Castillo
    Adelaide I. J. Young
    Catherine Piggin
    Samuel Rogers
    Catherine Elizabeth Caldon
    Andrew Burgess
    Ewan K. A. Millar
    Sandra A. O’Toole
    David Gallego-Ortega
    Christopher J. Ormandy
    Samantha R. Oakes
    Scientific Reports, 7
  • [8] Andy's Algorithms: new automated digital image analysis pipelines for FIJI
    Law, Andrew M. K.
    Yin, Julia X. M.
    Castillo, Lesley
    Young, Adelaide I. J.
    Piggin, Catherine
    Rogers, Samuel
    Caldon, Catherine Elizabeth
    Burgess, Andrew
    Millar, Ewan K. A.
    O'Toole, Sandra A.
    Gallego-Ortega, David
    Ormandy, Christopher J.
    Oakes, Samantha R.
    SCIENTIFIC REPORTS, 2017, 7
  • [9] Sensitivity Analysis of the Composite Data-Driven Pipelines in the Automated Machine Learning
    Barabanova, Irina, V
    Vychuzhanin, Pavel
    Nikitin, Nikolay O.
    10TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE IN COMPUTATIONAL SCIENCE (YSC2021), 2021, 193 : 484 - 493
  • [10] Comparison of quality control methods for automated diffusion tensor imaging analysis pipelines
    Haddad, Seyyed M. H.
    Scott, Christopher J. M.
    Ozzoude, Miracle
    Holmes, Melissa F.
    Arnott, Stephen R.
    Nanayakkara, Nuwan D.
    Ramirez, Joel
    Black, Sandra E.
    Dowlatshahi, Dar
    Strother, Stephen C.
    Swartz, Richard H.
    Symons, Sean
    Montero-Odasso, Manuel
    Bartha, Robert
    PLOS ONE, 2019, 14 (12):