Syngas production plus reducing carbon dioxide emission using dry reforming of methane: utilizing low-cost Ni-based catalysts

被引:11
|
作者
Abbasi, Saeid [1 ]
Abbasi, Mohsen [1 ]
Tabkhi, Firouz [1 ]
Akhlaghi, Benyamin [1 ]
机构
[1] Persian Gulf Univ, Dept Chem Engn, Fac Petr Gas & Petrochem Engn, Bushehr 75169, Iran
关键词
SYNTHESIS GAS; HYDROGEN-PRODUCTION; PARTIAL OXIDATION; DIMETHYL ETHER; STEAM; CO2; OPTIMIZATION; REACTOR; GASIFICATION; PERFORMANCE;
D O I
10.2516/ogst/2020016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Applicability of using Dry Reforming of Methane (DRM) using low-cost Ni-based catalysts instead of Conventional Steam Reformers (CSR) to producing syngas simultaneously with reducing the emission of carbon dioxide was studied. In order to achieving this goal, a multi-tubular recuperative thermally coupled reactor which consists of two-concentric-tubes has been designed (Thermally Coupled Tri- and Dry Reformer [TCTDR]). By employing parameters of an industrial scale CSR, two proposed configuration (DRM with fired-furnace and Tri-Reforming of Methane (TRM) instead of fired-furnace (TCTDR)) was simulated. A mathematical heterogeneous model was used to simulate proposed reactors and analyses were carried out based on methane conversion, hydrogen yield and molar flow rate of syngas for each reactor. The results displayed methane conversion of DRM with fired-furnace was 35.29% and 31.44% for Ni-K/CeO2-Al2O3 and Ni/La2O3 catalysts, respectively, in comparison to 26.5% in CSR. Methane conversion in TCTDR reached to 16.98% by Ni/La2O3 catalyst and 88.05% by NiO-Mg/Ce-ZrO2/Al2O3 catalyst in TRM side. Also, it was 15.88% using Ni-K/CeO2-Al2O3 catalyst in the DRM side and 88.36% using NiO-Mg/Ce-ZrO2/Al2O3 catalyst in TRM side of TCTDR. Finally, the effect of different amounts of supplying energy on the performance of DRM with fired-furnace was studied, and positive results in reducing the energy consumption were observed.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Ni-based catalysts for carbon dioxide reforming of methane
    Lu, GQ
    Wang, SB
    CHEMTECH, 1999, 29 (01) : 37 - 43
  • [2] Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts
    Chein, Reiyu
    Yang, Zengwei
    ACS OMEGA, 2019, 4 (25): : 20911 - 20922
  • [3] Syngas Production by Methane Reforming with Carbon Dioxide on Noble Metal Catalysts
    M.Rezaei
    S.M.Alavi
    S.Sahebdelfar
    Zi-Feng Yan
    Journal of Natural Gas Chemistry, 2006, (04) : 327 - 334
  • [4] Ni-based nano-catalysts for the dry reforming of methane
    Ali, Sardar
    Khader, Mahmoud M.
    Almarri, Mohammed J.
    Abdelmoneim, Ahmed G.
    CATALYSIS TODAY, 2020, 343 : 26 - 37
  • [5] Influence of promoting Ni-based catalysts with ruthenium in the dry reforming of polypropylene plastics for syngas production
    Younis, Aida
    Estephane, Jane
    Gennequin, Cedric
    Tidahy, Lucette
    El Khoury, Bilal
    Aouad, Samer
    Aad, Edmond Abi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (95) : 40204 - 40217
  • [6] Syngas production by dry reforming of methane using lyophilized nickel catalysts
    Moura-Nickel, Camilla Daniela
    Tachinski, Camila Gaspodini
    Landers, Richard
    De Noni Junior, Agenor
    Virmond, Elaine
    Peterson, Michael
    Peralta Muniz Moreira, Regina de Fatima
    Jose, Humberto Jorge
    CHEMICAL ENGINEERING SCIENCE, 2019, 205 : 74 - 82
  • [7] Carbon dioxide reforming of methane over Ni-based catalyst
    Cheng, ZX
    Zhao, XG
    Li, JL
    Zhu, QM
    GREENHOUSE GAS CONTROL TECHNOLOGIES, 1999, : 379 - 384
  • [8] Recent progress in the application of Ni-based catalysts for the dry reforming of methane
    Torrez-Herrera, J. J.
    Korili, S. A.
    Gil, A.
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2023, 65 (04): : 1300 - 1357
  • [9] Insight into the activity of Ni-based thermal catalysts for dry reforming of methane
    Wang, Ziquan
    Mei, Ziyu
    Wang, Luyuan
    Wu, Qilong
    Xia, Changlei
    Li, Song
    Wang, Tianyi
    Liu, Chuangwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (37) : 24802 - 24838
  • [10] Recent advances in dry reforming of methane over Ni-based catalysts
    Abdullah, Bawadi
    Ghani, Nur Azeanni Abd
    Vo, Dai-Viet N.
    JOURNAL OF CLEANER PRODUCTION, 2017, 162 : 170 - 185