Analysis of singular one-dimensional linear boundary value problems using two-point Taylor expansions

被引:7
|
作者
Ferreira, Chelo [1 ,2 ]
Lopez, Jose L. [3 ,4 ]
Perez Sinusia, Ester [1 ,2 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, C Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, C Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[3] Univ Publ Navarra, Dept Estadist Informat & Matemat, Campus Arrosadia, Pamplona 31006, Spain
[4] Univ Publ Navarra, INAMAT, Campus Arrosadia, Pamplona 31006, Spain
关键词
second-order linear differential equations; regular singular point; boundary value problem; Frobenius method; two-point Taylor expansions;
D O I
10.14232/ejqtde.2020.1.22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the second-order linear differential equation (x(2) - 1)y '' + f (x)y' + g(x)y = h(x) in the interval (-1,1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet-Neumann). The functions f, g and h are analytic in a Cassini disk D-r with foci at x = +/- 1 containing the interval [-1,1]. Then, the two end points of the interval may be regular singular points of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points +/- 1 is used to study the space of analytic solutions in D-r of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they exist.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条