On-orbit jitter measurement and analysis of precision pointing spacecraft and their instruments

被引:0
|
作者
Sudey, John, Jr. [2 ]
Stamatakos, Nick [3 ]
Kirchman, Paul [1 ,2 ,4 ]
Miller, Scott [5 ]
Yienger, Ken [6 ,7 ]
机构
[1] SGT, 1616 McCormick Dr, Upper Marlboro, MD 20774 USA
[2] Swales Aerosp ATK Space, Upper Marlboro, MD 20774 USA
[3] Swales Aerosp, Upper Marlboro, MD 20774 USA
[4] GOES Project, Washington, DC USA
[5] Orbital Sci Corp, Dulles, VA USA
[6] GOES N Project, Washington, DC USA
[7] NASA Goddard Space Flight Ctr, Washington, DC USA
来源
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents jitter performance of the first in a series of the new generation of Geostationary Operational Environmental Satellites, GOES-N spacecraft and instruments. Practical techniques are presented to demonstrate the importance of measuring and analyzing the dynamic interaction between the spacecraft and instruments for precise pointing of the spacecraft and its instruments. The discussion presented in this paper includes system requirements, mathematical modeling, 2D, FFT/3D/AFT, FFT image analysis, and instrument system sensitivity to jitter during ground and on-orbit testing. Emphasis is given to the cause and effect of the electromechanical disturbance, beginning with the dynamics of the instruments subsystem and their interaction and sensitivity to external and self-generated disturbances. Flight segment disturbances and impact on unwanted optical motion caused by scanning mirrors, as well as motion of the magnetometer boom, solar array, and attitude control system is presented. Also, presented is the disturbance and jitter on the solar array yoke XRP and its SXI instrument. The reaction wheel assemblies' disturbances are also considered. On-orbit testing, which was tailored to measure the deployment signature of the magnetometer and instrument's cooler doors not only for frequency but also to establish on-orbit damping knowledge is discussed. Methodology, techniques, and sensors used to measure and subsequently optimize and compensate for the flight segment disturbance are also described. Ground optical testing in ambient environment and dynamic interaction testing, which includes detector microphonics in thermal vacuum, are compared with those obtained on-orbit end-to-end. This paper offers a unique opportunity to build a database and utilize lessons learned for dynamic interaction in structures and payload detectors on future space platforms.
引用
收藏
页码:1869 / 1891
页数:23
相关论文
共 50 条
  • [1] On-orbit jitter performance of the GOES spacecraft and instruments
    Sudey, J
    Hagopian, M
    [J]. GOES-8 AND BEYOND, 1996, 2812 : 664 - 676
  • [2] POINTING JITTER CHARACTERIZATION FOR VARIOUS SSL 1300 SPACECRAFT WITH SIMULATIONS AND ON-ORBIT MEASUREMENTS
    Woo, Byoungsam
    Hogan, Erik A.
    [J]. ASTRODYNAMICS 2017, PTS I-IV, 2018, 162 : 3 - 15
  • [3] High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft
    Zhu, Bing
    Chen, Feng
    Li, Dongdong
    Wang, Ying
    [J]. MIPPR 2017: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2018, 10608
  • [4] Recent advances in precision measurement & pointing control of spacecraft
    Lin LI
    Li YUAN
    Li WANG
    Ran ZHENG
    Yanpeng WU
    Xiaoyan WANG
    [J]. Chinese Journal of Aeronautics., 2021, 34 (10) - 209
  • [5] Recent advances in precision measurement & pointing control of spacecraft
    Lin LI
    Li YUAN
    Li WANG
    Ran ZHENG
    Yanpeng WU
    Xiaoyan WANG
    [J]. Chinese Journal of Aeronautics, 2021, (10) : 191 - 209
  • [6] Recent advances in precision measurement & pointing control of spacecraft
    Li, Lin
    Yuan, Li
    Wang, Li
    Zheng, Ran
    Wu, Yanpeng
    Wang, Xiaoyan
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (10) : 191 - 209
  • [7] Co-aligned Pointing for On-orbit Intercalibration Between Instruments on Separate Satellites
    Holden, Tim
    [J]. 2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [8] A study of on-orbit spacecraft failures
    Tafazoli, Mak
    [J]. ACTA ASTRONAUTICA, 2009, 64 (2-3) : 195 - 205
  • [9] On-Orbit Degradation of Solar Instruments
    A. BenMoussa
    S. Gissot
    U. Schühle
    G. Del Zanna
    F. Auchère
    S. Mekaoui
    A. R. Jones
    D. Walton
    C. J. Eyles
    G. Thuillier
    D. Seaton
    I. E. Dammasch
    G. Cessateur
    M. Meftah
    V. Andretta
    D. Berghmans
    D. Bewsher
    D. Bolsée
    L. Bradley
    D. S. Brown
    P. C. Chamberlin
    S. Dewitte
    L. V. Didkovsky
    M. Dominique
    F. G. Eparvier
    T. Foujols
    D. Gillotay
    B. Giordanengo
    J. P. Halain
    R. A. Hock
    A. Irbah
    C. Jeppesen
    D. L. Judge
    M. Kretzschmar
    D. R. McMullin
    B. Nicula
    W. Schmutz
    G. Ucker
    S. Wieman
    D. Woodraska
    T. N. Woods
    [J]. Solar Physics, 2013, 288 : 389 - 434
  • [10] On-Orbit Degradation of Solar Instruments
    BenMoussa, A.
    Gissot, S.
    Schuehle, U.
    Del Zanna, G.
    Auchere, F.
    Mekaoui, S.
    Jones, A. R.
    Walton, D.
    Eyles, C. J.
    Thuillier, G.
    Seaton, D.
    Dammasch, I. E.
    Cessateur, G.
    Meftah, M.
    Andretta, V.
    Berghmans, D.
    Bewsher, D.
    Bolsee, D.
    Bradley, L.
    Brown, D. S.
    Chamberlin, P. C.
    Dewitte, S.
    Didkovsky, L. V.
    Dominique, M.
    Eparvier, F. G.
    Foujols, T.
    Gillotay, D.
    Giordanengo, B.
    Halain, J. P.
    Hock, R. A.
    Irbah, A.
    Jeppesen, C.
    Judge, D. L.
    Kretzschmar, M.
    McMullin, D. R.
    Nicula, B.
    Schmutz, W.
    Ucker, G.
    Wieman, S.
    Woodraska, D.
    Woods, T. N.
    [J]. SOLAR PHYSICS, 2013, 288 (01) : 389 - 434