Relevance feature mapping for content-based multimedia information retrieval

被引:16
|
作者
Zhou, Guang-Tong [1 ]
Ting, Kai Ming [2 ]
Liu, Fei Tony [2 ]
Yin, Yilong [1 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China
[2] Monash Univ, Gippsland Sch Informat Technol, Clayton, Vic 3842, Australia
基金
中国国家自然科学基金;
关键词
Content-based multimedia information retrieval; Ranking; Relevance feature; Relevance feedback; Isolation forest; IMAGE RETRIEVAL; FEEDBACK; CLASSIFICATION; QUERY;
D O I
10.1016/j.patcog.2011.09.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel ranking framework for content-based multimedia information retrieval (CBMIR). The framework introduces relevance features and a new ranking scheme. Each relevance feature measures the relevance of an instance with respect to a profile of the targeted multimedia database. We show that the task of CBMIR can be done more effectively using the relevance features than the original features. Furthermore, additional performance gain is achieved by incorporating our new ranking scheme which modifies instance rankings based on the weighted average of relevance feature values. Experiments on image and music databases validate the efficacy and efficiency of the proposed framework. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1707 / 1720
页数:14
相关论文
共 50 条
  • [1] A relevance feedback architecture for content-based multimedia information retrieval systems
    Rui, Y
    Huang, TS
    Mehrotra, S
    Ortega, M
    [J]. IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES, PROCEEDINGS, 1997, : 82 - 89
  • [2] MPEG and its relevance for content-based multimedia retrieval
    Haas, W
    Mayer, H
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2001, 7 (06): : 530 - 547
  • [3] Content-based retrieval in multimedia databases based on feature models
    Apers, P
    Kersten, M
    [J]. ADVANCED MULTIMEDIA CONTENT PROCESSING, 1999, 1554 : 119 - 130
  • [4] Structural segmentation for multimedia content-based information retrieval
    Carli, M
    Esposti, AD
    Micarelli, A
    Neri, A
    [J]. STORAGE AND RETRIEVAL FOR MEDIA DATABASES 2002, 2002, 4676 : 1 - 9
  • [5] Content-based image retrieval by feature adaptation and relevance feedback
    Grigorova, Anelia
    De Natale, Francesco G. B.
    Dagli, Charlie
    Huang, Thomas S.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (06) : 1183 - 1192
  • [6] Probabilistic feature relevance learning for content-based image retrieval
    Peng, J
    Bhanu, B
    Qing, S
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 1999, 75 (1-2) : 150 - 164
  • [7] A FEATURE RELEVANCE ESTIMATION METHOD FOR CONTENT-BASED IMAGE RETRIEVAL
    Ajorloo, Hossein
    Lakdashti, Abolfazl
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2011, 10 (05) : 933 - 961
  • [8] Content-based multimedia information retrieval: State of the art and challenges
    Lew, Michael S.
    Sebe, Nicu
    Djeraba, Chabane
    Jain, Ramesh
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2006, 2 (01) : 1 - 19
  • [9] Content-Based Multimedia Retrieval Using Feature Correlation Clustering and Fusion
    Ha, Hsin-Yu
    Fleites, Fausto C.
    Chen, Shu-Ching
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA DATA ENGINEERING & MANAGEMENT, 2013, 4 (02): : 46 - 64
  • [10] Content-based multimedia indexing and retrieval
    Djeraba, C
    [J]. IEEE MULTIMEDIA, 2002, 9 (02) : 18 - 22