Wavelength de-multiplexing metasurface hologram

被引:45
|
作者
Wang, Bo [1 ,2 ]
Quan, Baogang [3 ]
He, Jingwen [4 ]
Xie, Zhenwei [1 ,2 ]
Wang, Xinke [1 ,2 ]
Li, Junjie [3 ]
Kan, Qiang [5 ]
Zhang, Yan [1 ,2 ]
机构
[1] Capital Normal Univ, Beijing Key Lab Metamat & Devices, Key Lab Terahertz Optoelect, Dept Phys,Minist Educ, Beijing, Peoples R China
[2] Beijing Adv Innovat Ctr Imaging Technol, Beijing 100048, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[4] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China
[5] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
中国国家自然科学基金;
关键词
BROAD-BAND; PHASE; SPIN; LENSES;
D O I
10.1038/srep35657
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A wavelength de-multiplexing metasurface hologram composed of subwavelength metallic antennas is designed and demonstrated experimentally in the terahertz ( THz) regime. Different character patterns are generated at the separated working frequencies 0.50 THz and 0.63 THz which determine a narrow frequency bandwidth of 130 GHz. The two working frequencies are around the central resonance frequency of the antennas where antennas behave strong wavefront modulation. Each antenna is fully utilized to control the wavefront of the metasurface at different frequencies by an optimization algorithm. The results demonstrate a candidate way to design multi-colors optical display elements.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Wavelength de-multiplexing metasurface hologram
    Bo Wang
    Baogang Quan
    Jingwen He
    Zhenwei Xie
    Xinke Wang
    Junjie Li
    Qiang Kan
    Yan Zhang
    [J]. Scientific Reports, 6
  • [2] Pulsed pump wavelength exchange for high speed signal de-multiplexing
    Kwok, C. H.
    Kuo, Bill P. P.
    Wong, Kenneth K. Y.
    [J]. OPTICS EXPRESS, 2008, 16 (15) : 10894 - 10899
  • [3] A Plasmonic Photonic Diode for Unidirectional Focusing, Imaging, and Wavelength Division De-Multiplexing
    Zhang, Xinping
    Zhang, Jian
    Liu, Hongmei
    Zhai, Tianrui
    [J]. ADVANCED OPTICAL MATERIALS, 2014, 2 (04): : 355 - 363
  • [4] A Negative Index Metamaterial Waveguide for De-Multiplexing
    Vidal, Xavier
    Baev, Alexander
    Furlani, Edward P.
    Prasad, Paras N.
    [J]. NANOTECHNOLOGY 2011: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, NSTI-NANOTECH 2011, VOL 2, 2011, : 611 - 614
  • [5] Multiplexing and de-multiplexing of digital holograms recorded in microscopic configuration
    Paturzo, Melania
    Memmolo, Pasquale
    Tulino, Antonia
    Finizio, Andrea
    Miccio, Lisa
    Ferraro, Pietro
    [J]. MODELING ASPECTS IN OPTICAL METROLOGY II, 2009, 7390
  • [6] Polarization de-multiplexing based on T-CMN
    Lu Jinhua
    Hu Guijun
    Sun Yunbo
    Shi Jian
    [J]. OPTICS COMMUNICATIONS, 2013, 290 : 49 - 54
  • [7] Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection
    Laubscher, M
    Bourquin, S
    Froehly, L
    Karamata, B
    Lasser, T
    [J]. OPTICS COMMUNICATIONS, 2004, 237 (4-6) : 275 - 283
  • [8] Software-based universal de-multiplexing
    Guichard, F
    Rudin, L
    Litz, A
    Yu, P
    [J]. ENABLING TECHNOLOGIES FOR LAW ENFORCEMENT AND SECURITY, 2000, 4232 : 513 - 520
  • [9] Polarization Multiplexing Hologram Realized by Anisotropic Digital Metasurface
    Yan, Tao
    Ma, Qian
    Sun, Shi
    Xiao, Qiang
    Shahid, Iqbal
    Gao, Xinxin
    Cui, Tie Jun
    [J]. ADVANCED THEORY AND SIMULATIONS, 2021, 4 (06)
  • [10] Photothermal metasurface with polarization and wavelength multiplexing
    Zhao, Ke
    Li, Zilu
    Zhong, Yongchun
    Dai, Qiaofeng
    [J]. OPTICS EXPRESS, 2024, 32 (03) : 3551 - 3560