Lp REGULARITY OF LEAST GRADIENT FUNCTIONS

被引:1
|
作者
Corny, Wojciech [1 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Warsaw, Poland
关键词
Least gradient problem; anisotropy; L-p regularity;
D O I
10.1090/proc/15031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that in the anisotropic least gradient problem on an open bounded set Omega subset of R-N with Lipschitz boundary, given boundary data f is an element of L-p(partial derivative Omega) the solutions lie in LNp/N-1 (Omega); the exponent is shown to be optimal. Moreover, the solutions are shown to be locally bounded with explicit bounds on the rate of blow-up of the solution near the boundary in two settings: in the anisotropic case on the plane and in the isotropic case in any dimension.
引用
收藏
页码:3009 / 3019
页数:11
相关论文
共 50 条
  • [1] EXISTENCE, UNIQUENESS, AND REGULARITY FOR FUNCTIONS OF LEAST GRADIENT
    STERNBERG, P
    WILLIAMS, G
    ZIEMER, WP
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 430 : 35 - 60
  • [2] Regularity of area minimizing currents I: gradient Lp estimates
    Camillo De Lellis
    Emanuele Spadaro
    [J]. Geometric and Functional Analysis, 2014, 24 : 1831 - 1884
  • [3] Stability and Continuity of Functions of Least Gradient
    Hakkarainen, H.
    Korte, R.
    Lahti, P.
    Shanmugalingam, N.
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 123 - 139
  • [4] Functions of Least Gradient and 1-Harmonic Functions
    Mazon, Jose M.
    Rossi, Julio D.
    Segura de Leon, Sergio
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 1067 - 1084
  • [5] Planar least gradient problem: existence, regularity and anisotropic case
    Wojciech Górny
    [J]. Calculus of Variations and Partial Differential Equations, 2018, 57
  • [6] Planar least gradient problem: existence, regularity and anisotropic case
    Gorny, Wojciech
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [7] MEDIAN VALUES, 1-HARMONIC FUNCTIONS, AND FUNCTIONS OF LEAST GRADIENT
    Rudd, Matthew B.
    Van Dyke, Heather A.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) : 711 - 719
  • [8] p-harmonic approximation of functions of least gradient
    Juutinen, P
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (04) : 1015 - 1029
  • [9] Least gradient functions in metric random walk spaces
    Gorny, Wojciech
    Mazon, Jose M.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [10] OPTIMAL TRANSPORT APPROACH TO SOBOLEV REGULARITY OF SOLUTIONS TO THE WEIGHTED LEAST GRADIENT PROBLEM
    Dweik, Samer
    Gorny, Wojciech
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) : 1916 - 1948