A dynamic parameterization modeling for the age-period-cohort mortality

被引:20
|
作者
Hatzopoulos, P. [1 ]
Haberman, S. [2 ]
机构
[1] Univ Aegean, Dept Stat & Actuarial Financial Math, Samos 83200, Greece
[2] City Univ London, Sir John Cass Business Sch, Fac Actuarial Sci & Insurance, London EC1Y 8TZ, England
来源
INSURANCE MATHEMATICS & ECONOMICS | 2011年 / 49卷 / 02期
关键词
Cohort; Mortality forecasting; Generalized linear models; Sparse principal component analysis; Factor analysis; Dynamic linear regression; Bootstrap confidence intervals; FORECASTING MORTALITY; REDUCTION FACTORS; CARTER; PROJECTIONS; RATES;
D O I
10.1016/j.insmatheco.2011.02.007
中图分类号
F [经济];
学科分类号
02 ;
摘要
An extended version of Hatzopoulos and Haberman (2009) dynamic parametric model is proposed for analyzing mortality structures, incorporating the cohort effect. A one-factor parameterized exponential polynomial in age effects within the generalized linear models (GLM) framework is used. Sparse principal component analysis (SPCA) is then applied to time-dependent GLM parameter estimates and provides (marginal) estimates for a two-factor principal component (PC) approach structure. Modeling the two-factor residuals in the same way, in age-cohort effects, provides estimates for the (conditional) three-factor age-period-cohort model. The age-time and cohort related components are extrapolated using dynamic linear regression (DLR) models. An application is presented for England & Wales males (1841-2006). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 174
页数:20
相关论文
共 50 条
  • [1] Age-period-cohort modeling
    Rutherford, Mark J.
    Lambert, Paul C.
    Thompson, John R.
    [J]. STATA JOURNAL, 2010, 10 (04): : 606 - 627
  • [2] Age-period-cohort modeling of colorectal cancer incidence and mortality in Spain
    López-Abente, G
    Pollán, M
    Vergara, A
    Moreno, C
    Moreo, P
    Ardanaz, E
    Aragonés, N
    [J]. CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 1997, 6 (12) : 999 - 1005
  • [3] PARSIMONIOUS PARAMETERIZATION OF AGE-PERIOD-COHORT MODELS BY BAYESIAN SHRINKAGE
    Venter, Gary
    Sahin, Sule
    [J]. ASTIN BULLETIN, 2018, 48 (01): : 89 - 110
  • [4] On age-period-cohort parametric mortality rate projections
    Haberman, Steven
    Renshaw, Arthur
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (02): : 255 - 270
  • [5] Rethinking age-period-cohort mortality trend models
    Alai, Daniel H.
    Sherris, Michael
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2014, 2014 (03) : 208 - 227
  • [6] Bayesian age-period-cohort modeling and prediction - BAMP
    Schmid, Volker J.
    Held, Leonhard
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2007, 21 (08): : 1 - 15
  • [7] MODELING HETEROSCEDASTIC AGE-PERIOD-COHORT CANCER DATA
    MACNEILL, IB
    MAO, Y
    XIE, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (04): : 529 - 539
  • [8] Bayesian Age-Period-Cohort Model of Lung Cancer Mortality
    Tharu, Bhikhari P.
    Kafle, Ram C.
    Tsokos, Chris P.
    [J]. EPIDEMIOLOGY BIOSTATISTICS AND PUBLIC HEALTH, 2015, 12 (03)
  • [9] AGE-PERIOD-COHORT ANALYSIS OF MORTALITY DATA - AN EXPLORATORY APPROACH
    WILMOTH, JR
    [J]. POPULATION INDEX, 1986, 52 (03) : 416 - 416
  • [10] Age-period-cohort effect on mortality from cervical cancer
    Meira, Karina Cardoso
    Azevedo e Silva, Gulnar
    Furtado Passos da Silva, Cosme Marcelo
    Valente, Joaquim Goncalves
    [J]. REVISTA DE SAUDE PUBLICA, 2013, 47 (02): : 274 - 282