Inverted quantum-dot solar cells with depleted heterojunction structure employing CdS as the electron acceptor

被引:17
|
作者
Yao, Xudong [1 ]
Chang, Yajing [1 ]
Li, Guopeng [1 ]
Mi, Longfei [1 ]
Liu, Shangjing [1 ]
Wang, Hui [1 ]
Yu, Yalan [1 ]
Jiang, Yang [1 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划); 高等学校博士学科点专项科研基金;
关键词
CdS electron acceptor; Inverted structure; PbS quantum-dots; Power conversion efficiency; Solar cells; CHEMICAL BATH DEPOSITION; ENERGY-CONVERSION; PHOTOVOLTAICS; FABRICATION; EFFICIENCY;
D O I
10.1016/j.solmat.2015.02.011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Colloidal quantum-dot (QD) solar cells have emerged as one of the most promising photovoltaic techniques. Herein, we report an inverted PbS QD solar cells employing solution-processed CdS as the electron acceptor materials. Chemical bath deposition - one featuring ease of fabrication and compatibility with a low-temperature process - was employed to prepare CdS film on FTO glass, followed by deposition of PbS QDs as absorbing layer in a layer-by-layer fashion, thereby forming a depleted heterojunction structure. The results suggested that the thickness of CdS layer can be a key factor for determining the photovoltaic performance. After systematical optimization, an inverted FTO/CdS/PbS QDs/MoO3/Ag structure with an ultra-thin CdS film of 40 nm delivered a decent power conversion efficiency of 5.22%. The maximum temperature is similar to 85 degrees C via device fabrication demonstrates potential large-scale production process. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [1] PbS Quantum-Dot Depleted Heterojunction Solar Cells Employing CdS Nanorod Arrays as the Electron Acceptor with Enhanced Efficiency
    Yao, Xudong
    Liu, Shangjing
    Chang, Yajing
    Li, Guopeng
    Mi, Longfei
    Wang, Xiaoming
    Jiang, Yang
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) : 23117 - 23123
  • [2] Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells
    Tavakoli, Mohammad Mahdi
    Aashuri, Hossein
    Simchi, Abdolreza
    Fan, Zhiyong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (37) : 24412 - 24419
  • [3] PbS/CdS heterojunction quantum dot solar cells
    Sawsan Dagher
    Yousef Haik
    Nacir Tit
    Ahmad Ayesh
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 3328 - 3340
  • [4] PbS/CdS heterojunction quantum dot solar cells
    Dagher, Sawsan
    Haik, Yousef
    Tit, Nacir
    Ayesh, Ahmad
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (04) : 3328 - 3340
  • [5] Depleted-Heterojunction Colloidal Quantum Dot Solar Cells
    Pattantyus-Abraham, Andras G.
    Kramer, Illan J.
    Barkhouse, Aaron R.
    Wang, Xihua
    Konstantatos, Gerasimos
    Debnath, Ratan
    Levina, Larissa
    Raabe, Ines
    Nazeeruddin, Mohammad K.
    Graetzel, Michael
    Sargent, Edward H.
    ACS NANO, 2010, 4 (06) : 3374 - 3380
  • [6] Piezoelectric-Polarization-Enhanced Photovoltaic Performance in Depleted-Heterojunction Quantum-Dot Solar Cells
    Shi, Jian
    Zhao, Ping
    Wang, Xudong
    ADVANCED MATERIALS, 2013, 25 (06) : 916 - 921
  • [7] Colloidal quantum-dot bulk-heterojunction solar cells
    Chao Ding
    Lixiu Zhang
    Qing Shen
    Liming Ding
    Journal of Semiconductors, 2021, 42 (11) : 11 - 14
  • [8] Colloidal quantum-dot bulk-heterojunction solar cells
    Ding, Chao
    Zhang, Lixiu
    Shen, Qing
    Ding, Liming
    JOURNAL OF SEMICONDUCTORS, 2021, 42 (11)
  • [9] Quantum-dot intermediate-band solar cells with inverted band alignment
    Franceschetti, A.
    Lany, S.
    Bester, G.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 41 (01): : 15 - 17
  • [10] Inverted Planar Heterojunction Perovskite Solar Cells Employing Polymer as the Electron Conductor
    Wang, Weiwei
    Yuan, Jianyu
    Shi, Guozheng
    Zhu, Xiangxiang
    Shi, Shaohua
    Liu, Zeke
    Han, Lu
    Wang, Hai-Qiao
    Ma, Wanli
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (07) : 3994 - 3999