Transcriptional analysis of the isiAB operon in salt-stressed cells of the cyanobacterium Synechocystis sp. PCC 6803

被引:75
|
作者
Vinnemeier, J [1 ]
Kunert, A [1 ]
Hagemann, M [1 ]
机构
[1] Univ Rostock, Fachbereich Biol, D-18051 Rostock, Germany
关键词
cyanobacterium; flavodoxin; iron stress; isiA; salt stress; Synechocystis;
D O I
10.1016/S0378-1097(98)00478-9
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Expression of the isiA and isiB genes was analysed in the cyanobacterium Synechocystis sp. PCC 6803 grown in high salt or in iron-deficient medium. The detection of a 2.3-knt transcript in Northern blot experiments indicated cotranscription of isiAB in an operon, which was confirmed by reverse transcriptase PCR. The abundance of a monocistronic 1.25-knt isiA-specific mRNA was about 10-fold higher than the dicistronic message. The isiAB-specific transcripts were most abundant in cells adapted to 342 mM NaCl and under iron deficiency. The promoter of the operon was mapped to 211 bp upstream of the translational start. A putative Fur binding site was detected immediately upstream of the GTG start codon. A preliminary transcript of about 0.2 knt was detected in cells grown in conditions in which the isiAB operon was not transcribed. This indicates that a repressor binds to the identified Fur binding site and thus inhibits isiAB transcription under low salt and iron replete conditions. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 50 条
  • [1] Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803
    Miao, XL
    Wu, QY
    Wu, GF
    Zhao, NM
    FEMS MICROBIOLOGY LETTERS, 2003, 218 (01) : 71 - 77
  • [2] Repression by Fur is not the main mechanism controlling the iron-inducible isiAB operon in the cyanobacterium Synechocystis sp PCC 6803
    Kunert, A
    Vinnemeier, J
    Erdmann, N
    Hagemann, M
    FEMS MICROBIOLOGY LETTERS, 2003, 227 (02) : 255 - 262
  • [3] The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803
    Miguel A. Hernández-Prieto
    Trudi Ann Semeniuk
    Joaquín Giner-Lamia
    Matthias E. Futschik
    Scientific Reports, 6
  • [4] Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803
    Yamamoto, H
    Miyake, C
    Dietz, KJ
    Tomizawa, KI
    Murata, N
    Yokota, A
    FEBS LETTERS, 1999, 447 (2-3): : 269 - 273
  • [5] Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803
    Xue, Xi-Mei
    Raber, Georg
    Foster, Simon
    Chen, Song-Can
    Francesconi, Kevin A.
    Zhu, Yong-Guan
    ENVIRONMENTAL CHEMISTRY, 2014, 11 (05) : 506 - 513
  • [6] The role of transcriptional repressor activity of LexA in salt-stress responses of the cyanobacterium Synechocystis sp. PCC 6803
    Takashima, Kosuke
    Nagao, Syota
    Kizawa, Ayumi
    Suzuki, Takehiro
    Dohmae, Naoshi
    Hihara, Yukako
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] The role of transcriptional repressor activity of LexA in salt-stress responses of the cyanobacterium Synechocystis sp. PCC 6803
    Kosuke Takashima
    Syota Nagao
    Ayumi Kizawa
    Takehiro Suzuki
    Naoshi Dohmae
    Yukako Hihara
    Scientific Reports, 10
  • [8] Effect of Gravity Changes on the Cyanobacterium Synechocystis sp. PCC 6803
    N. Erdmann
    U. Effmert
    S. Fulda
    S. Oheim
    Current Microbiology, 1997, 35 : 348 - 355
  • [9] Effect of gravity changes on the cyanobacterium Synechocystis sp. PCC 6803
    Erdmann, N
    Effmert, U
    Fulda, S
    Oheim, S
    CURRENT MICROBIOLOGY, 1997, 35 (06) : 348 - 355
  • [10] Astaxanthin production in a model cyanobacterium Synechocystis sp. PCC 6803
    Shimada, Naoya
    Okuda, Yukiko
    Maeda, Kaisei
    Umeno, Daisuke
    Takaichi, Shinichi
    Ikeuchi, Masahiko
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2020, 66 (02): : 116 - 120