Large Deviations for Zeros of P(φ)2 Random Polynomials

被引:4
|
作者
Feng, Renjie [1 ]
Zelditch, Steve [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
Large deviations; P(phi)(2) random polynomials;
D O I
10.1007/s10955-011-0206-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the results of (Zeitouni and Zelditch in Int. Math. Res. Not. 2010(20): 3939-3992, 2010) on LDPs (large deviations principles) for the empirical measures Zs := 1/N Sigma(zeta:s(zeta)=0) delta zeta, (N:= #{zeta : s(zeta) = 0}) of zeros of Gaussian random polynomials s in one variable to P(phi)(2) random polynomials. The speed and rate function are the same as in the associated Gaussian case. It follows that the expected distribution of zeros in the P(phi)(2) ensembles tends to the same equilibrium measure as in the Gaussian case.
引用
收藏
页码:619 / 635
页数:17
相关论文
共 50 条