Deep Recurrent Support Vector Machine for Online Regression

被引:0
|
作者
Dilmen, Erdem [1 ]
Beyhan, Selami [2 ]
机构
[1] Pamukkale Univ, Dept Mechatron Engn, TR-20020 Denizli, Turkey
[2] Pamukkale Univ, Dept Elect & Elect Engn, TR-20020 Denizli, Turkey
关键词
CLASSIFIERS; ALGORITHM; KERNEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel deep recurrent support vector regressor (DRSVR) model for online regression. DRSVR model is constructed by a state equation followed by an output construction. The inner layer is actually a least squares support vector regressor (LS-SVR) of the states with an adaptive kernel function. In addition, an infinite impulse response (IIR) filter is adopted in the model. LS-SVR and IIR filter together constitute an intermediate layer which performs the recursive state update. Each internal state has a recurrency which is a function of the observed input-output data and the previous states. Hence, internal states track the temporal dependencies in the feature space. The outer layer is a linear combination of the states. The model parameters, including the Gaussian kernel width parameter, are updated simultaneously, that provides the model to capture the time-varying dynamics of the data quickly. Parameters are adaptively tuned using error-square minimization via conventional Gauss-Newton optimization while keeping the poles of the IIR filter constrained to maintain stability. The proposed DRSVR model is applied for real-time nonlinear system identification. The identification results indicate the accurate regression performance of the proposed model.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dynamic Support Vector Machine Regression Based on Recurrent Strategy
    Wang, Jing
    Huang, Yinghua
    Cao, Liulin
    Jin, Qibing
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3177 - 3181
  • [2] Online learning for quantile regression and support vector regression
    Hu, Ting
    Xiang, Dao-Hong
    Zhou, Ding-Xuan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3107 - 3122
  • [3] Regression depth and support vector machine
    Christmann, Andreas
    DATA DEPTH: ROBUST MULTIVARIATE ANALYSIS, COMPUTATIONAL GEOMETRY AND APPLICATIONS, 2006, 72 : 71 - 85
  • [4] An ε-twin support vector machine for regression
    Yuan-Hai Shao
    Chun-Hua Zhang
    Zhi-Min Yang
    Ling Jing
    Nai-Yang Deng
    Neural Computing and Applications, 2013, 23 : 175 - 185
  • [5] An ε-twin support vector machine for regression
    Shao, Yuan-Hai
    Zhang, Chun-Hua
    Yang, Zhi-Min
    Jing, Ling
    Deng, Nai-Yang
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (01): : 175 - 185
  • [6] A flexible support vector machine for regression
    Chen, Xiaobo
    Yang, Jian
    Liang, Jun
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (08): : 2005 - 2013
  • [7] A flexible support vector machine for regression
    Xiaobo Chen
    Jian Yang
    Jun Liang
    Neural Computing and Applications, 2012, 21 : 2005 - 2013
  • [8] Deep Support Vector Classification and Regression
    Diaz-Vico, David
    Prada, Jesus
    Omari, Adil
    Dorronsoro, Jose R.
    FROM BIOINSPIRED SYSTEMS AND BIOMEDICAL APPLICATIONS TO MACHINE LEARNING, PT II, 2019, 11487 : 33 - 43
  • [9] Online Support Vector Machine: A Survey
    Zhou, Xujun
    Zhang, Xianxia
    Wang, Bing
    HARMONY SEARCH ALGORITHM, 2016, 382 : 269 - 278
  • [10] Online Learning Algorithm of Direct Support Vector Machine for Regression Based on Cholesky Factorization
    Li Junfei
    Zhang Baolei
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 1376 - 1380