Analysis of Recurrent Neural Networks for Short-Term Energy Load Forecasting

被引:4
|
作者
Di Persio, Luca [1 ,2 ]
Honchar, Oleksandr [1 ,2 ]
机构
[1] Univ Verona, Dept Comp Sci, Verona, Italy
[2] HPA, Trento, Italy
关键词
D O I
10.1063/1.5012469
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Short-term forecasts have recently gained an increasing attention because of the rise of competitive electricity markets. In fact, short-terms forecast of possible future loads turn out to be fundamental to build efficient energy management strategies as well as to avoid energy wastage. Such type of challenges are difficult to tackle both from a theoretical and applied point of view. Latter tasks require sophisticated methods to manage multidimensional time series related to stochastic phenomena which are often highly interconnected. In the present work we first review novel approaches to energy load forecasting based on recurrent neural network, focusing our attention on long/short term memory architectures (LSTMs). Such type of artificial neural networks have been widely applied to problems dealing with sequential data such it happens, e.g., in socio-economics settings, for text recognition purposes, concerning video signals, etc., always showing their effectiveness to model complex temporal data. Moreover, we consider different novel variations of basic LSTMs, such as sequence-to-sequence approach and bidirectional LSTMs, aiming at providing effective models for energy load data. Last but not least, we test all the described algorithms on real energy load data showing not only that deep recurrent networks can be successfully applied to energy load forecasting, but also that this approach can be extended to other problems based on time series prediction.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [1] Recurrent neural networks for short-term load forecasting
    Vermaak, J
    Botha, EC
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (01) : 126 - 132
  • [2] Short-Term Load Forecasting Employing Recurrent Neural Networks
    Mostafa, Tanzim
    Fouda, Mostafa M.
    Abdo, Mohammad G.
    2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024, 2024,
  • [3] Short-term energy load forecasting using recurrent neural network
    Rashid, T
    Kechadi, T
    Huang, BQ
    Proceedings of the Eighth IASTED International Conference on Artificial Intelligence and Soft Computing, 2004, : 276 - 281
  • [4] Very Short-Term Load Forecasting Based on NARX Recurrent Neural Networks
    de Andrade, Luciano Carli M.
    Oleskovicz, Mario
    Santos, Athila Quaresma
    Coury, Denis Vinicius
    Souza Fernandes, Ricardo Augusto
    2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [5] Neural networks application in short-term load forecasting
    Tudose, Andrei
    Picioroaga, Irina
    Sidea, Dorian
    Bulac, Constantin
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2021, 83 (02): : 231 - 240
  • [6] SHORT-TERM LOAD FORECASTING USING NEURAL NETWORKS
    KIARTZIS, SJ
    BAKIRTZIS, AG
    PETRIDIS, V
    ELECTRIC POWER SYSTEMS RESEARCH, 1995, 33 (01) : 1 - 6
  • [7] NEURAL NETWORKS APPLICATION IN SHORT-TERM LOAD FORECASTING
    Tudose, Andrei
    Picioroaga, Irina
    Sidea, Dorian
    Bulac, Constantin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2021, 83 (02): : 231 - 240
  • [8] Application of neural networks for short-term load forecasting
    Afkhami, Reza
    Yazdi, F. Mosalman
    2006 IEEE POWER INDIA CONFERENCE, VOLS 1 AND 2, 2006, : 24 - +
  • [9] Short-term residential load forecasting using Graph Convolutional Recurrent Neural Networks
    Arastehfar, Sana
    Matinkia, Mohammadjavad
    Jabbarpour, Mohammad Reza
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [10] Short-term load forecasting using recurrent neutral networks
    Srivastava, SC
    Veankataraman, D
    FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN POWER SYSTEM CONTROL, OPERATION & MANAGEMENT, VOLS 1 AND 2, 1997, : 145 - 150