Dependence of density fluctuations on shape and collisionality in positive- and negative-triangularity tokamak plasmas

被引:16
|
作者
Huang, Zhouji [1 ,2 ]
Coda, Stefano [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[2] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave,NW17, Cambridge, MA 02139 USA
基金
瑞士国家科学基金会;
关键词
plasma turbulence; triangularity; collisionality; transport; density fluctuations; TRANSPORT;
D O I
10.1088/1361-6587/aadb59
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effects of plasma shaping, in particular of the triangularity delta, on plasma turbulence, in terms of relative density fluctuations, have been studied in the TCV tokamak. It has been found that for inner wall limited L-mode plasmas, negative triangularity leads to a substantial reduction of turbulence amplitude, as well as of the spectral index and correlation length, consistent with the beneficial effect on energy confinement. Crucially, this reduction extends deep in the core, where the local triangularity becomes vanishingly small. A stabilizing effect of effective collisionality on trapped electron mode turbulence was also observed. These observations are consistent with previous experimental results on the effects of triangularity and collisionality on electron heat transport, as well as with global gyrokinetic GENE simulation results.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Comparison of MHD Stability between Positive- and Negative-Triangularity Tokamak Plasmas with Internal Transport Barriers
    Masamoto, Yusai
    Aiba, Nobuyuki
    Furukawa, Masaru
    [J]. PLASMA AND FUSION RESEARCH, 2022, 17
  • [2] Effects of collisionality and Te/Ti on fluctuations in positive and negative δ tokamak plasmas
    Fontana, M.
    Porte, L.
    Coda, S.
    Sauter, O.
    Brunner, S.
    Jayalekshmi, A. Chandrarajan
    Fasoli, A.
    Merlo, G.
    [J]. NUCLEAR FUSION, 2020, 60 (01)
  • [3] Comparison of MHD Stability between Positive and Negative-Triangularity Tokamak Plasmas with Internal Transport Barriers*)
    Masamoto, Yusai
    Aiba, Nobuyuki
    Furukawa, Masaru
    [J]. Plasma and Fusion Research, 2022, 17 (SpecialIssue 1):
  • [4] Computational analysis of ion orbital loss in diverted positive- and negative-triangularity tokamaks
    Nishimura, Y.
    Waelbroeck, F. L.
    Zheng, L. J.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (01)
  • [5] Negative-Triangularity Magnetic Configurations in T-15MD Tokamak
    Gorbun M.S.
    Melnikov A.V.
    Sychugov D.Y.
    [J]. Computational Mathematics and Modeling, 2021, 32 (1) : 1 - 6
  • [6] A brief history of negative triangularity tokamak plasmas
    Marinoni A.
    Sauter O.
    Coda S.
    [J]. Reviews of Modern Plasma Physics, 5 (1)
  • [7] Enhanced confinement in diverted negative-triangularity L-mode plasmas in TCV
    Coda, S.
    Merle, A.
    Sauter, O.
    Porte, L.
    Bagnato, F.
    Boedo, J.
    Bolzonella, T.
    Fevrier, O.
    Labit, B.
    Marinoni, A.
    Pau, A.
    Pigatto, L.
    Sheikh, U.
    Tsui, C.
    Vallar, M.
    Vu, T.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (01)
  • [8] Density peaking, anomalous pinch, and collisionality in tokamak plasmas
    Angioni, C
    Peeters, AG
    Pereverzev, GV
    Ryter, F
    Tardini, G
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (20) : 1 - 205003
  • [9] Effect of negative triangularity on tearing mode stability in tokamak plasmas
    Yang, Xu
    Liu, Yueqiang
    Xu, Wei
    He, Yuling
    Xia, Guoliang
    [J]. NUCLEAR FUSION, 2023, 63 (06)
  • [10] Turbulent transport in TCV plasmas with positive and negative triangularity
    Merlo, G.
    Fontana, M.
    Coda, S.
    Hatch, D.
    Janhunen, S.
    Porte, L.
    Jenko, F.
    [J]. PHYSICS OF PLASMAS, 2019, 26 (10)