Solitary waves of the bona - Smith system

被引:6
|
作者
Dougalis, VA [1 ]
Mitsotakis, DE [1 ]
机构
[1] Univ Athens, Dept Math, Zografos 15784, Greece
关键词
D O I
10.1142/9789812702593_0030
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We consider the Bona - Smith family of Boussinesq systems and show, following Toland's theory, that it possesses solitary wave solutions for each k > 1, where k is the speed of propagation of the wave. In addition, the solitary waves are shown to be unique if k is small enough. We also make a brief computational study of the stability of these solitary waves.
引用
收藏
页码:286 / 294
页数:9
相关论文
共 50 条
  • [1] A Numerical Study of the Stability of Solitary Waves of the Bona–Smith Family of Boussinesq Systems
    V. A. Dougalis
    A. Durán
    M. A. López-Marcos
    D. E. Mitsotakis
    [J]. Journal of Nonlinear Science, 2007, 17 : 569 - 607
  • [2] A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems
    Dougalis, V. A.
    Duran, A.
    Lopez-Marcos, M. A.
    Mitsotakis, D. E.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2007, 17 (06) : 569 - 607
  • [3] Solitary waves and conservation laws of Bona-Chen equations
    A Biswas
    E. V. Krishnan
    P. Suarez
    A. H. Kara
    S. Kumar
    [J]. Indian Journal of Physics, 2013, 87 : 169 - 175
  • [4] Solitary waves and conservation laws of Bona-Chen equations
    Biswas, A.
    Krishnan, E. V.
    Suarez, P.
    Kara, A. H.
    Kumar, S.
    [J]. INDIAN JOURNAL OF PHYSICS, 2013, 87 (02) : 169 - 175
  • [5] Solitary wave solutions for the originating waves that propagate of the fractional Wazwaz-Benjamin-Bona-Mahony system
    Ali, Asghar
    Ahmad, Jamshad
    Javed, Sara
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 69 : 121 - 133
  • [6] A study of the Bona-Smith system describing the two-way propagation of water waves in a channel
    Motsepa, Tanki
    Khalique, Chaudry Masood
    [J]. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [7] Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation
    El Dika, K
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (03) : 583 - 622
  • [8] Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation.
    El Dika, K
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 337 (10) : 649 - 652
  • [9] Solitary Waves, Shock Waves and Singular Solitons of the Generalized Ostrovsky-Benjamin-Bona-Mahoney Equation
    Triki, Houria
    Jovanoski, Zlatko
    Biswas, Anjan
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (01): : 113 - 116
  • [10] On the solitary wave solutions of modified Benjamin–Bona–Mahony equation for unidirectional propagation of long waves
    A K Gupta
    J Hazarika
    [J]. Pramana, 2020, 94