Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance

被引:71
|
作者
Yoo, Doo-Yeol [1 ]
Shin, Wonsik [1 ]
Chun, Booki [1 ]
Banthia, Nemkumar [2 ]
机构
[1] Hanyang Univ, Dept Architectural Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[2] Univ British Columbia, Dept Civil Engn, 6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada
基金
新加坡国家研究基金会;
关键词
Ultra-high-performance fiber-reinforced concrete; Self-healing; Steel fiber corrosion; Tensile performance; Surface roughness; MECHANICAL-PROPERTIES; PULLOUT BEHAVIOR; ACID ATTACK; CEMENT; STRENGTH; DURABILITY; SILICA; PERMEABILITY; COMPOSITES; SHRINKAGE;
D O I
10.1016/j.cemconres.2020.106091
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study evaluated steel fiber corrosion and tensile behaviors of plain and self-healed ultra-high-performance fiber-reinforced concrete (UHPFRC) exposed to 3.5% sodium chloride (NaCl) solution. The degree of steel fiber corrosion was quantitatively evaluated via energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) image analyses. Test results indicate that, even after a 20-week immersion in the NaCl solution, only few steel fibers located near the surface of the non-cracked UHPFRC samples were slightly corroded, and they insignificantly affected the tensile behavior. A slightly better tensile performance was achieved by self-healing process, and it was further improved after exposure to the NaCl solution for a longer duration due to the moderately corroded steel fibers through the partially self-healed cracks. The surface roughness of the pulled-out steel fibers from the composites increased due to the self-healing and corrosion processes, relevant to the enhanced tensile performance, and by increasing the immersion duration.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Tensile Behavior of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete
    Li, Jiayue
    Deng, Zongcai
    FRONTIERS IN MATERIALS, 2021, 8
  • [2] Tensile behaviour of ultra-high-performance steel fiber reinforced concrete
    Yang, Yuechen
    Ismail, Mohammed
    Pantazopoulou, S. J.
    Palermo, Dan
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2021, 48 (11) : 1409 - 1421
  • [3] Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete
    Smarzewski, Piotr
    Barnat-Hunek, Danuta
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2018, 16 (6A) : 593 - 606
  • [4] Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete
    Piotr Smarzewski
    Danuta Barnat-Hunek
    International Journal of Civil Engineering, 2018, 16 : 593 - 606
  • [5] Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete
    Abellan-Garcia, J.
    Fernandez-Gomez, J. A.
    Torres-Castellanos, N.
    Nunez-Lopez, A. M.
    ACI MATERIALS JOURNAL, 2021, 118 (01) : 127 - 138
  • [6] Effect of Fiber Orientation on Compressive Strength of Ultra-High-Performance Fiber-Reinforced Concrete
    Riedel, Philipp
    Leutbecher, Torsten
    ACI MATERIALS JOURNAL, 2021, 118 (02) : 199 - 209
  • [7] Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction
    Dadmand, Behrooz
    Pourbaba, Masoud
    Sadaghian, Hamed
    Mirmiran, Amir
    ADVANCES IN CONCRETE CONSTRUCTION, 2020, 10 (03) : 195 - 209
  • [8] Structural performance of ultra-high-performance fiber-reinforced concrete beams
    Kahanji, Charles
    Ali, Faris
    Nadjai, Ali
    STRUCTURAL CONCRETE, 2017, 18 (02) : 249 - 258
  • [9] Development of Precast Bridge Slabs in High-Performance Fiber-Reinforced Concrete and Ultra-High-Performance Fiber-Reinforced Concrete
    Lachance, Frederic
    Charron, Jean-Philippe
    Massicotte, Bruno
    ACI STRUCTURAL JOURNAL, 2016, 113 (05) : 929 - 939
  • [10] Size and geometry dependent tensile behavior of ultra-high-performance fiber-reinforced concrete
    Duy Liem Nguyen
    Ryu, Gum Sung
    Koh, Kyung Taek
    Kim, Dong Joo
    COMPOSITES PART B-ENGINEERING, 2014, 58 : 279 - 292