Non-invasive Metabolomic Profiling of Embryo Culture Medium Using Raman Spectroscopy With Deep Learning Model Predicts the Blastocyst Development Potential of Embryos

被引:9
|
作者
Zheng, Wei [1 ,2 ,3 ]
Zhang, Shuoping [2 ]
Gu, Yifan [1 ,2 ]
Gong, Fei [1 ,2 ]
Kong, Lingyin [4 ]
Lu, Guangxiu [1 ,2 ]
Lin, Ge [1 ,2 ,3 ]
Liang, Bo [5 ]
Hu, Liang [1 ,2 ,3 ]
机构
[1] Cent South Univ, Natl Hlth Commiss NHC, Key Lab Human Stem Cell & Reprod Engn, Inst Reprod & Stem Cell Engn,Sch Basic Med Sci, Changsha, Peoples R China
[2] Reprod & Genet Hosp CITIC Xangya, Clin Res Ctr Reprod & Genet Hunan Prov, Changsha, Peoples R China
[3] Hunan Int Sci & Technol Cooperat Base Dev & Carci, Changsha, Peoples R China
[4] Basecare Med Device Co Ltd, Suzhou, Peoples R China
[5] Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Joint Int Res Lab Metab & Dev Sci, Sch Life Sci & Biotechnol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
embryo viability prediction; metabolomic profiling; multilayer perceptron; non-invasive assessment; Raman spectroscopy; CRITERIA;
D O I
10.3389/fphys.2021.777259
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Purpose: This study aimed to establish a non-invasive predicting model via Raman spectroscopy for evaluating the blastocyst development potential of day 3 high-quality cleavage stage embryos.Methods: Raman spectroscopy was used to detect the metabolic spectrum of spent day 3 (D3) embryo culture medium, and a classification model based on deep learning was established to differentiate between embryos that could develop into blastocysts (blastula) and that could not (non-blastula). The full-spectrum data for 80 blastula and 48 non-blastula samples with known blastocyst development potential from 34 patients were collected for this study.Results: The accuracy of the predicting method was 73.53% and the main different Raman shifts between blastula and non-blastula groups were 863.5, 959.5, 1,008, 1,104, 1,200, 1,360, 1,408, and 1,632 cm(-1) from 80 blastula and 48 non-blastula samples by the linear discriminant method.Conclusion: This study demonstrated that the developing potential of D3 cleavage stage embryos to the blastocyst stage could be predicted with spent D3 embryo culture medium using Raman spectroscopy with deep learning classification models, and the overall accuracy reached at 73.53%. In the Raman spectroscopy, ribose vibration specific to RNA were found, indicating that the difference between the blastula and non-blastula samples could be due to materials that have similar structure with RNA. This result could be used as a guide for biomarker development of embryo quality assessment in the future.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Non-invasive metabolomic profiling of Day 3 embryo culture media using near-infrared spectroscopy to assess the development potential of embryos
    Fu, Jing
    Shao, Juan
    Li, Xiong
    Xu, Yan
    Liu, Suying
    Sun, Xiaoxi
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2013, 45 (12) : 1074 - 1078
  • [2] Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial
    Hardarson, T.
    Ahlstrom, A.
    Rogberg, L.
    Botros, L.
    Hillensjo, T.
    Westlander, G.
    Sakkas, D.
    Wikland, M.
    HUMAN REPRODUCTION, 2012, 27 (01) : 89 - 96
  • [3] Non-invasive assessment of embryo viability by metabolomic profiling of culture media ('metabolomics')
    Nagy, Zsolt Peter
    Sakkas, Denny
    Behr, Barry
    REPRODUCTIVE BIOMEDICINE ONLINE, 2008, 17 (04) : 502 - 507
  • [4] Non-invasive metabolomic profiling of culture media of ICSI- and IVF-derived early developmental cattle embryos via Raman spectroscopy
    Li, Xiao-Xia
    Cao, Ping-Hua
    Han, Wen-Xia
    Xu, Ya-Kun
    Wu, Hua
    Yu, Xue-Li
    Chen, Jun-Yi
    Zhang, Fan
    Li, Ying-Hua
    ANIMAL REPRODUCTION SCIENCE, 2018, 196 : 99 - 110
  • [5] Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study
    Scott, Richard
    Seli, Emre
    Miller, Kathy
    Sakkas, Denny
    Scott, Katherine
    Burns, David H.
    FERTILITY AND STERILITY, 2008, 90 (01) : 77 - 83
  • [6] DNA profiling of culture medium as a novel, non-invasive tool for embryo assessment
    Scaruffi, P.
    Stigliani, S.
    Venturini, P. L.
    Anserini, P.
    HUMAN REPRODUCTION, 2013, 28 : 1 - 2
  • [7] Non-invasive assessment of embryo reproductive potential: Metabolomic profiling of biomarkers of oxidative metabolism (OM) during embryo development.
    Hardarson, T.
    Rogberg, L.
    Ahlstrom, A.
    Wikland, M.
    Rose, P.
    Burns, D.
    FERTILITY AND STERILITY, 2007, 88 : S307 - S308
  • [8] Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome
    Stigliani, S.
    Persico, L.
    Lagazio, C.
    Anserini, P.
    Venturini, P. L.
    Scaruffi, P.
    MOLECULAR HUMAN REPRODUCTION, 2014, 20 (12) : 1238 - 1246
  • [9] Non-invasive Amino Acid Profiling of Embryo Culture Medium Using HPLC Correlates With Embryo Implantation Potential in Women Undergoing in vitro Fertilization
    Huo, Peng
    Zhu, Yunshan
    Liang, Chengqin
    Yao, Jun
    Le, Jianghua
    Qin, Linyuan
    Lei, Xiaocan
    Zhang, Shun
    FRONTIERS IN PHYSIOLOGY, 2020, 11
  • [10] Non-invasive metabolomic and chemometric analysis of human embryo culture medium at low oxygen pressure
    Gonsalvez-Alvarez, R.
    Ten, J.
    Lledo, B.
    Bernabeu, R.
    Marhuenda-Egea, F. C.
    HUMAN REPRODUCTION, 2015, 30 : 238 - 238