Hyperspectral Remote Sensing Image Classification Algorithm Based on Nonlocal Mode Feature Fusion

被引:1
|
作者
Liu Hongchao [1 ]
Dong Anguo [1 ]
机构
[1] Changan Univ, Sch Sci, Xian 710064, Shaanxi, Peoples R China
关键词
image processing; hyperspectral remote sensing image; image classification; deep learning;
D O I
10.3788/LOP57.061017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming at the characteristics of high dimensionality of the hyperspectral image data, nonlincarity of the feature and difficulty of obtaining the tag data, combined with the stack sparse automatic coding network, we propose a two-level classification algorithm based on nonlocal mode feature fusion. Compared with the traditional stack sparse automatic coding network, the spectral angle matching algorithm stacks the spectral information found most similar to the classified pixel to form new spectral information, and puts it into the SoftMax classifier for first-level classification. The pixels satisfying the condition arc added to the training data set for classification training of the stack sparse coding network. Finally, the classification algorithm is modified according to the spatial neighborhood information to make the classification result more smooth. Compared with other classification algorithms, it is found that the improved classification algorithm has higher accuracy and can effectively improve the classification effect of hyperspectral image.
引用
收藏
页数:7
相关论文
共 13 条
  • [1] Braun A C, 2011, 2011 3 WORKSH HYP IM
  • [2] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [3] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [4] Du X P, 2016, ACTA OPT SINICA, V36
  • [5] Spectral-Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08): : 4186 - 4201
  • [6] Li T, 2016, LASER OPTOELECTRONIC, V53
  • [7] Liu D W, 2016, ACTA OPTICA SINICA, V36
  • [8] Feature Selection for Classification of Hyperspectral Data by SVM
    Pal, Mahesh
    Foody, Giles M.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (05): : 2297 - 2307
  • [9] A sparse auto-encoder-based deep neural network approach for induction motor faults classification
    Sun, Wenjun
    Shao, Siyu
    Zhao, Rui
    Yan, Ruqiang
    Zhang, Xingwu
    Chen, Xuefeng
    [J]. MEASUREMENT, 2016, 89 : 171 - 178
  • [10] Unsupervised Spectral-Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification
    Tao, Chao
    Pan, Hongbo
    Li, Yansheng
    Zou, Zhengrou
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2438 - 2442