Parametric and Nonparametric Analysis of Eye-Tracking Data by Anomaly Detection

被引:8
|
作者
Jansson, Daniel [1 ]
Rosen, Olov [1 ]
Medvedev, Alexander [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden
基金
欧洲研究理事会;
关键词
Anomaly detection; eye-tracking; input design; nonlinear system identification; Parkinson's disease; PARKINSONS-DISEASE; MOVEMENTS; SCHIZOPHRENIA; DENSITY;
D O I
10.1109/TCST.2014.2364958
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An approach to smooth pursuit eye movement's analysis by means of stochastic anomaly detection is presented and applied to the problem of distinguishing between patients diagnosed with Parkinson's disease and normal controls. Both parametric Wiener model-based techniques and nonparametric modeling utilizing a description of the involved probability density functions in orthonormal bases are considered. The necessity of proper visual stimuli design for the accuracy of mathematical modeling is highlighted and a formal method for producing such stimuli is suggested. The efficacy of the approach is demonstrated on experimental data collected by means of a commercial video-based eye tracker.
引用
收藏
页码:1578 / 1586
页数:9
相关论文
共 50 条
  • [1] Non-parametric analysis of eye-tracking data by anomaly detection
    Jansson, Daniel
    Rosen, Olov
    Medvedev, Alexander
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 632 - 637
  • [2] Parametric and Non-Parametric Stochastic Anomaly Detection in Analysis of Eye-Tracking Data
    Jansson, Daniel
    Medvedev, Alexander
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2532 - 2537
  • [3] Automatic analysis of eye-tracking data using object detection algorithms
    De Beugher, Stijn
    Ichiche, Younes
    Brone, Geert
    Goedeme, Toon
    UBICOMP'12: PROCEEDINGS OF THE 2012 ACM INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING, 2012, : 677 - 680
  • [4] Stochastic Anomaly Detection in Eye-Tracking Data for Quantification of Motor Symptoms in Parkinson's Disease
    Jansson, Daniel
    Medvedev, Alexander
    Axelson, Hans
    Nyholm, Dag
    2013 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES, 2013, 1559 : 98 - 107
  • [5] Stochastic Anomaly Detection in Eye-Tracking Data for Quantification of Motor Symptoms in Parkinson's Disease
    Jansson, Daniel
    Medvedev, Alexander
    Axelson, Hans
    Nyholm, Dag
    SIGNAL AND IMAGE ANALYSIS FOR BIOMEDICAL AND LIFE SCIENCES, 2015, 823 : 63 - 82
  • [6] EYE TRACKING AND THE TRANSLATION PROCESS: REFLECTIONS ON THE ANALYSIS AND INTERPRETATION OF EYE-TRACKING DATA
    Hvelplund, Kristian Tangsgaard
    MONTI, 2014, : 201 - 223
  • [7] An Analysis of Eye-Tracking Data in Foveated Ray Tracing
    Roth, Thorsten
    Weier, Martin
    Hinkenjann, Andre
    Li, Yongmin
    Slusallek, Philipp
    PROCEEDINGS OF THE SECOND WORKSHOP ON EYE TRACKING AND VISUALIZATION (ETVIS 2016), 2016, : 69 - 73
  • [8] Multifractal Detrended Fluctuation Analysis of Eye-Tracking Data
    Freije, M. L.
    Jimenez Gandica, A. A.
    Specht, J. I.
    Gasaneo, G.
    Delrieux, C. A.
    Stosic, B.
    Stosic, T.
    de Luis-Garcia, R.
    VIPIMAGE 2017, 2018, 27 : 476 - 484
  • [9] Eye-Tracking Data Analysis During Cognitive Task
    Orsi, Rafael Nobre
    Dal Fabbro, Davi Araujo
    Thomaz, Carlos Eduardo
    COMPUTATIONAL NEUROSCIENCE, 2019, 1068 : 200 - 219
  • [10] Eye-tracking of nodule detection in lung CT volumetric data
    Diaz, Ivan
    Schmidt, Sabine
    Verdun, Francis R.
    Bochud, Francois O.
    MEDICAL PHYSICS, 2015, 42 (06) : 2925 - 2932