Sea Ice Cover Detection of the Far Eastern Seas by Data of the MSU-MR Radiometer of the Meteor-M No. 2 Satellite

被引:2
|
作者
Kuchma, M. O. [1 ]
Lotareva, Z. N. [1 ]
Slesarenko, L. A. [1 ]
机构
[1] State Res Ctr Space Hydrometeorol Planeta, Far Eastern Ctr, Russia 680000, Russia
关键词
remote sensing; MSU-MR; convolutional neural network; textures; ice; ice cover mask; CONVOLUTIONAL NEURAL-NETWORKS; SNOW;
D O I
10.1134/S0001433821090528
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this paper, the technology for determining the ice cover mask using a convolutional neural network as applied to data of a low-resolution multispectral scanning device installed on the Meteor-M No. 2 Russian satellite is considered. The selection criteria for the parameters involved in training the neural network and the process of determining texture size are described. The classification score of the developed model is determined using the machine learning metrics. Validation of the results shows that the algorithm has an accuracy of 94.9 and 96.7% in comparison with ice cover masks according to data of the MOD10 product of the MODIS instrument and archived ice condition maps created in accordance with the international WMO Sea Ice Nomenclature.
引用
收藏
页码:1179 / 1187
页数:9
相关论文
共 16 条
  • [1] Sea Ice Cover Detection of the Far Eastern Seas by Data of the MSU-MR Radiometer of the Meteor-M No. 2 Satellite
    M. O. Kuchma
    Z. N. Lotareva
    L. A. Slesarenko
    Izvestiya, Atmospheric and Oceanic Physics, 2021, 57 : 1179 - 1187
  • [2] Algorithm for the Atmospheric Correction of Shortwave Channels of the MSU-MR Radiometer of the Meteor-M No. 2 Satellite
    M. O. Kuchma
    V. D. Bloshchinskiy
    Izvestiya, Atmospheric and Oceanic Physics, 2020, 56 : 909 - 915
  • [3] Algorithm for the Atmospheric Correction of Shortwave Channels of the MSU-MR Radiometer of the Meteor-M No. 2 Satellite
    Kuchma, M. O.
    Bloshchinskiy, V. D.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2020, 56 (09) : 909 - 915
  • [4] Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data
    Andreev, A., I
    Shamilova, Yu A.
    Kholodov, E., I
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2019, 44 (07) : 459 - 466
  • [5] Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data
    A. I. Andreev
    Yu. A. Shamilova
    E. I. Kholodov
    Russian Meteorology and Hydrology, 2019, 44 : 459 - 466
  • [6] Two-Channel Algorithm for Determining the Aerosol Optical Depth over the Sea Surface Using the MSU-MR Radiometer of the Meteor-M No. 2 Satellite
    Kuchma, M. O.
    Kholodov, E. I.
    Amel'chenko, Yu. A.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2022, 58 (09) : 1194 - 1199
  • [7] Two-Channel Algorithm for Determining the Aerosol Optical Depth over the Sea Surface Using the MSU-MR Radiometer of the Meteor-M No. 2 Satellite
    M. O. Kuchma
    E. I. Kholodov
    Yu. A. Amel’chenko
    Izvestiya, Atmospheric and Oceanic Physics, 2022, 58 : 1194 - 1199
  • [8] Retrieval of Total Column Carbon Dioxide over Russia from Meteor-M No. 2 Satellite Data
    Golomolzin, V. V.
    Rublev, A. N.
    Kiseleva, Yu, V
    Kozlov, D. A.
    Prokushkin, A. S.
    Panov, A., V
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2022, 47 (04) : 304 - 314
  • [9] Retrieval of Total Column Carbon Dioxide over Russia from Meteor-M No. 2 Satellite Data
    V. V. Golomolzin
    A. N. Rublev
    Yu. V. Kiseleva
    D. A. Kozlov
    A. S. Prokushkin
    A. V. Panov
    Russian Meteorology and Hydrology, 2022, 47 : 304 - 314
  • [10] Microwave Radiometer MTVZA-GY on New Russian Satellite Meteor-M No. 2-2 and Sudden Stratospheric Warming Over Antarctica
    Mitnik, Leonid
    Kuleshov, Vladimir
    Mitnik, Maia
    Chernyavsky, Grigory
    Cherny, Igor
    Streltsov, Andrey
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 820 - 830