A characterization theory for the gamma-convergence

被引:0
|
作者
Bucur, D
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is given a characterization theorem for the shape continuity of the solution of a Dirichlet problem (gamma-convergence) in terms of the geometric behavior of the moving domain. A sequence of open sets gamma converges to an open set if and only if two different local capacities are lower respectively upper semi continuous.
引用
收藏
页码:883 / 888
页数:6
相关论文
共 50 条
  • [1] A Characterization theorem for the gamma-convergence
    Bucur, D.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 323 (08):
  • [2] ABSTRACT GAMMA-CONVERGENCE
    FRANZONI, T
    LECTURE NOTES IN MATHEMATICS, 1986, 1190 : 229 - 241
  • [3] ON A DEFINITION OF GAMMA-CONVERGENCE OF MEASURES
    DEGIORGI, E
    LECTURE NOTES IN MATHEMATICS, 1984, 1091 : 150 - 159
  • [4] ASYMPTOTIC DEVELOPMENT BY GAMMA-CONVERGENCE
    ANZELLOTTI, G
    BALDO, S
    APPLIED MATHEMATICS AND OPTIMIZATION, 1993, 27 (02): : 105 - 123
  • [5] GAMMA-CONVERGENCE AND CALCULUS OF VARIATIONS
    DEGIORGI, E
    DALMASO, G
    LECTURE NOTES IN MATHEMATICS, 1983, 979 : 121 - 143
  • [6] WIENER CRITERION AND GAMMA-CONVERGENCE
    DALMASO, G
    MOSCO, U
    APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (01): : 15 - 63
  • [7] Gamma-convergence of nonlocal perimeter functionals
    Ambrosio, Luigi
    De Philippis, Guido
    Martinazzi, Luca
    MANUSCRIPTA MATHEMATICA, 2011, 134 (3-4) : 377 - 403
  • [8] Gamma-convergence of nonlocal perimeter functionals
    Luigi Ambrosio
    Guido De Philippis
    Luca Martinazzi
    Manuscripta Mathematica, 2011, 134 : 377 - 403
  • [9] Gamma-convergence of Gaussian fractions perimeter
    Carbotti, Alessandro
    Cito, Simone
    La Manna, Domenico Angelo
    Pallara, Diego
    ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (03) : 571 - 595
  • [10] An Introduction to Gamma-Convergence for Spectral Clustering
    Challa, Aditya
    Danda, Sravan
    Sagar, B. S. Daya
    Najman, Laurent
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2017, 2017, 10502 : 185 - 196