A Compact Electron Transport Layer Using a Heated Tin-Oxide Colloidal Solution for Efficient Perovskite Solar Cells

被引:3
|
作者
Meng, Juan [1 ,2 ,3 ]
Rohr, Jason A. [2 ]
Wang, Hang [2 ]
Sartor, B. Edward [2 ]
Song, Dandan [1 ,3 ]
Katzenberg, Adlai [2 ]
Modestino, Miguel A. [2 ]
Xu, Zheng [1 ,3 ]
Kong, Jaemin [4 ,5 ]
Taylor, Andre D. [2 ]
机构
[1] Beijing Jiaotong Univ, Key Lab Luminescence & Opt Informat, Minist Educ, Beijing 100044, Peoples R China
[2] NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, New York, NY 11201 USA
[3] Beijing Jiaotong Univ, Inst Optoelect Technol, Beijing 100044, Peoples R China
[4] Gyeongsang Natl Univ, Res Inst Green Energy Convergence Technol, Jinju 52828, South Gyeongsan, South Korea
[5] Gwangju Inst Sci & Technol, Res Inst Solar & Sustainable Energies, Gwangju 61005, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
aqueous colloidal solutions; interface; perovskite solar cells; SnO2 electron transport layers; thin films; SNO2; NANOPARTICLES; GROWTH; METAL; FILMS;
D O I
10.1002/solr.202100794
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tin dioxide is a frequently reported electron transporting material for perovskite solar cells (PSCs) that yields high-performance devices and can be solution processed from aqueous colloidal solutions. While being very simple to process, electron transport layers deposited in this manner often lead to nonuniform film morphology, significantly affecting the morphology of the subsequent perovskite layer, lowering the overall device performance. Herein, it is shown that heating the SnO2 colloidal solution (70 degrees C) results in compact SnO2 films with increased surface coverage and fewer gaps in the SnO2 film. Such films possess threefold higher lateral electrical conductivity than those obtained from room-temperature solutions. The narrow gaps in the SnO2 film also reduce the chances of direct contact between the indium tin oxide electrode and the perovskite layer, yielding better contact with less voltage loss. The improved SnO2 surface coverage induces larger perovskite grains (approximate to 565 nm) than those prepared from the room-temperature solution (approximate to 273 nm). Finally, using these compact SnO2 layers, efficient and stable PSCs that retain approximate to 85% of the initial power conversion efficiency of 20.67% after 100 h of maximum power point tracking are demonstrated.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer
    Lee, Yonghui
    Lee, Seunghwan
    Seo, Gabseok
    Paek, Sanghyun
    Cho, Kyung Taek
    Huckaba, Aron J.
    Calizzi, Marco
    Choi, Dong-won
    Park, Jin-Seong
    Lee, Dongwook
    Lee, Hyo Joong
    Asiri, Abdullah M.
    Nazeeruddin, Mohammad Khaja
    [J]. ADVANCED SCIENCE, 2018, 5 (06):
  • [2] Metal Oxide Compact Electron Transport Layer Modification for Efficient and Stable Perovskite Solar Cells
    Shahiduzzaman, Md.
    Fukaya, Shoko
    Muslih, Ersan Y.
    Wang, Liangle
    Nakano, Masahiro
    Akhtaruzzaman, Md.
    Karakawa, Makoto
    Takahashi, Kohshin
    Nunzi, Jean-Michel
    Taima, Tetsuya
    [J]. MATERIALS, 2020, 13 (09)
  • [3] Tin oxide as an electron transport layer in perovskite solar cells: Advances and challenges
    Wali, Qamar
    Aamir, Muhammad
    Khan, Muhammad Ejaz
    Jose, Rajan
    Fan, Wei
    Yang, Shengyuan
    [J]. SOLAR ENERGY, 2024, 270
  • [4] Efficient and stable planar perovskite solar cells using co-doped tin oxide as the electron transport layer
    Sakthivel, P.
    Foo, Shini
    Thambidurai, M.
    Harikesh, P. C.
    Mathews, Nripan
    Yuvakkumar, R.
    Ravi, G.
    Dang, Cuong
    [J]. JOURNAL OF POWER SOURCES, 2020, 471 (471)
  • [5] Amino-capped zinc oxide modified tin oxide electron transport layer for efficient perovskite solar cells
    Zhao, Rongjun
    Wang, Linqin
    Huang, Jing
    Miao, Xiaohe
    Sun, Licheng
    Hua, Yong
    Wang, Yude
    [J]. CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (10):
  • [6] Analytical Study of Solution-Processed Tin Oxide as Electron Transport Layer in Printed Perovskite Solar Cells
    Rohnacher, Valentina
    Ullrich, Florian
    Eggers, Helge
    Schackmar, Fabian
    Hell, Sebastian
    Salazar, Adriana
    Huck, Christian
    Hernandez-Sosa, Gerardo
    Paetzold, Ulrich W.
    Jaegermann, Wolfram
    Pucci, Annemarie
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (02)
  • [7] An efficient electron transport material of tin oxide for planar structure perovskite solar cells
    Murugadoss, Govindhasamy
    Kanda, Hiroyuki
    Tanaka, Soichiro
    Nishino, Hitoshi
    Ito, Seigo
    Imahoric, Hiroshi
    Umeyama, Tomokazu
    [J]. JOURNAL OF POWER SOURCES, 2016, 307 : 891 - 897
  • [8] Seed-Assisted Growth of Tin Oxide Transport Layer for Efficient Perovskite Solar Cells
    Shen, Zhichao
    Luo, Xinhui
    Shen, Yangzi
    Liu, Xiao
    Segawa, Hiroshi
    Han, Qifeng
    Han, Liyuan
    [J]. SOLAR RRL, 2023, 7 (12)
  • [9] Hydrophobic Electron-Transport Layer for Efficient Tin-Based Perovskite Solar Cells
    He, Feifei
    Li, Tianpeng
    Shen, Tao
    Zhao, Yinghan
    Jin, Zuoming
    Zhang, Zhiguo
    Pu, Yu
    Deng, Liangliang
    Qin, Lang
    Zhan, Yiqiang
    Liu, Yunqi
    Wang, Yang
    Liang, Jia
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [10] Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis
    Song, Peiquan
    Xie, Liqiang
    Shen, Lina
    Liu, Kaikai
    Liang, Yuming
    Lin, Kebin
    Lu, Jianxun
    Tian, Chengbo
    Wei, Zhanhua
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (04)