Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles

被引:70
|
作者
Sahin, Derya [1 ]
Ilan, Boaz [1 ]
Kelley, David F. [1 ]
机构
[1] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA
关键词
QUANTUM RODS; DYE ALIGNMENT; CDSE; HETEROSTRUCTURES; EFFICIENCY; CDTE; RECOMBINATION; NANOCRYSTALS; REABSORPTION; PERFORMANCE;
D O I
10.1063/1.3619809
中图分类号
O59 [应用物理学];
学科分类号
摘要
Semiconductor nanoparticles have a wide absorption band and small reabsorption probability, which makes them great candidates for luminescent solar concentrators (LSCs). We use Monte-Carlo simulations of photon transport to predict the performance of LSCs based on "type-II" CdSe-CdTe quantum dots. These computations suggest that semiconductor-based LSCs can be highly efficient. The optimum performance is reached with a fairly long LSC with a photovoltaic cell covering only one edge. In addition, when the LSC has CdSe-CdTe nanorods that are aligned perpendicular to the top surface, the escape of photons from the top surface is significantly reduced. These results are encouraging for cost-effective LSC designs based on semiconductor nanoparticles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3619809]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Modeling light propagation in semiconductor-based luminescent solar concentrators
    Sahin, Derya
    Ilan, Boaz
    NONIMAGING OPTICS: EFFICIENT DESIGN FOR ILLUMINATION AND SOLAR CONCENTRATION X, 2013, 8834
  • [2] Monte-Carlo Ray-tracing Simulations of Perovskite Quantum Dots-based Luminescent Solar Concentrators
    Shu J.-P.
    Wang P.-J.
    Zhang X.-W.
    Xie K.-H.
    Zhang H.-H.
    Chen R.-W.
    Faguang Xuebao/Chinese Journal of Luminescence, 2019, 40 (04): : 484 - 490
  • [3] Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all-inorganic perovskite quantum dots
    Shu, Junpeng
    Zhang, Xiaowei
    Wang, Pengjun
    Chen, Ruowang
    Zhang, Huihong
    Li, Dongke
    Zhang, Pei
    Xu, Jun
    PHYSICA B-CONDENSED MATTER, 2018, 548 : 53 - 57
  • [4] Multicanonical Monte-Carlo simulations of light propagation in biological media
    Bilenca, A
    Desjardins, A
    Bouma, BE
    Tearney, GJ
    OPTICS EXPRESS, 2005, 13 (24) : 9822 - 9833
  • [5] Principles of Monte-Carlo ray-tracing simulations of quantum dot solar concentrators
    Schueler, A.
    Kostro, A.
    Galande, C.
    del Olmo, M. Valle
    de Chambrier, E.
    Huriet, B.
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 1033 - 1037
  • [6] Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics
    Leow, Shin Woei
    Corrado, Carley
    Osborn, Melissa
    Carter, Sue A.
    HIGH AND LOW CONCENTRATOR SYSTEMS FOR SOLAR ELECTRIC APPLICATIONS VIII, 2013, 8821
  • [7] Theoretical analysis of luminescent solar concentrators based on stacked doped fibres by means of Monte Carlo ray-tracing simulations
    Barata, J.
    Arrue, J.
    Illarramendi, M. A.
    Zubia, J.
    PHOTONICS FOR SOLAR ENERGY SYSTEMS X, 2024, 13014
  • [8] Monte-Carlo simulations
    Giersz, M
    DYNAMICAL EVOLUTION OF STAR CLUSTERS - CONFRONTATION OF THEORY AND OBSERVATIONS, 1996, (174): : 101 - 110
  • [9] LUMINESCENT SOLAR CONCENTRATORS Semiconductor solution
    Debije, Michael
    NATURE PHOTONICS, 2017, 11 (03) : 143 - 144
  • [10] MONTE-CARLO SIMULATION OF THE PERFORMANCE OF PMMA LUMINESCENT SOLAR COLLECTORS
    CARRASCOSA, M
    UNAMUNO, S
    AGULLOLOPEZ, F
    APPLIED OPTICS, 1983, 22 (20): : 3236 - 3241