Singular limit of a competition-diffusion system with large interspecific interaction

被引:10
|
作者
Hilhorst, Danielle [1 ]
Martin, Sebastien [1 ]
Mimura, Masayasu [2 ]
机构
[1] Univ Paris 11, Math Lab, CNRS, Fac Sci Orsay,UMR 8628, F-91405 Orsay, France
[2] Meiji Univ, Dept Math, Sch Sci & Technol, Inst Adv Studies Math Sci,Tama Ku, Kawasaki, Kanagawa, Japan
关键词
Competition-diffusion system; Singular limit problem; Spatial segregation; Free boundary problem; DIRICHLET BOUNDARY-CONDITIONS; SPATIAL SEGREGATION LIMIT; GLOBAL STABILITY; LIESEGANG BANDS; DYNAMICS; PERMANENCE; IMPULSES; MODEL;
D O I
10.1016/j.jmaa.2012.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a competition-diffusion system for two competing species; the density of the first species satisfies a parabolic equation together with an inhomogeneous Dirichlet boundary condition whereas the second one either satisfies a parabolic equation with a homogeneous Neumann boundary condition, or an ordinary differential equation. Under the situation where the two species spatially segregate as the interspecific competition rate becomes large, we show that the resulting limit problem turns out to be a free boundary problem. We focus on the singular limit of the interspecific reaction term, which involves a measure located on the free boundary. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:488 / 513
页数:26
相关论文
共 50 条
  • [1] A free boundary problem as a singular limit of a competition-diffusion system
    Iida, M
    Mimura, M
    Yanagida, E
    TOHOKU MATHEMATICAL PUBLICATIONS, NO 8: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ASYMPTOTICS IN NONLINEAR DIFFUSIVE SYSTEMS, 1998, : 217 - 221
  • [2] Singular limit of a spatially inhomogeneous Lotka-Volterra competition-diffusion system
    Hilhorst, D.
    Karali, G.
    Matano, H.
    Nakashima, K.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (06) : 879 - 933
  • [3] Spatial segregation limit of a competition-diffusion system
    Dancer, EN
    Hilhorst, D
    Mimura, M
    Peletier, LA
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 : 97 - 115
  • [4] Generation of interfaces for Lotka-Volterra competition-diffusion system with large interaction rates
    Nakashima, Kimie
    Wakasa, Tohru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) : 586 - 608
  • [5] The competition-diffusion limit of a stochastic growth model
    Gobron, T
    Saada, E
    Triolo, L
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (11) : 1153 - 1161
  • [6] A competition-diffusion system with a refuge
    Gao, Daozhou
    Liang, Xing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (02): : 435 - 454
  • [7] Spatial segregation limit of a non-autonomous competition-diffusion system
    Zhang, Shan
    Zhou, Ling
    Liu, Zuhan
    Lin, Zhigui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 119 - 129
  • [8] Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions
    Crooks, ECM
    Dancer, EN
    Hilhorst, D
    Mimura, M
    Ninomiya, H
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (04) : 645 - 665
  • [9] Complex pattern formation driven by the interaction of stable fronts in a competition-diffusion system
    Lorenzo Contento
    Masayasu Mimura
    Journal of Mathematical Biology, 2020, 80 : 303 - 342
  • [10] Complex pattern formation driven by the interaction of stable fronts in a competition-diffusion system
    Contento, Lorenzo
    Mimura, Masayasu
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (1-2) : 303 - 342