Dichotomy Guided Based Parameter Adaptation for Differential Evolution

被引:6
|
作者
Liu, Xiao-Fang
Zhan, Zhi-Hui [1 ]
Zhang, Jun
机构
[1] Sun Yat Sen Univ, Dept Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Adaptive parameter control; dichotomy-guided; differential evolution; evolutionary optimization; GLOBAL OPTIMIZATION; ALGORITHM;
D O I
10.1145/2739480.2754646
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution (DE) is an efficient and powerful population-based stochastic evolutionary algorithm, which evolves according to the differential between individuals. The success of DE in obtaining the optima of a specific problem depends greatly on the choice of mutation strategies and control parameter values. Good parameters lead the individuals towards optima successfully. The increasing of the success rate (the ratio of entering the next generation successfully) of population can speed up the searching. Adaptive DE incorporates success-history or population-state based parameter adaptation. However, sometimes poor parameters may improve individual with small probability and are regarded as successful parameters. The poor parameters may mislead the parameter control. So, in this paper, we propose a novel approach to distinguish between good and poor parameters in successful parameters. In order to speed up the convergence of algorithm and find more "good" parameters, we propose a dichotomy adaptive DE (DADE), in which the successful parameters are divided into two parts and only the part with higher success rate is used for parameter adaptation control. Simulation results show that DADE is competitive to other classic or adaptive DE algorithms on a set of benchmark problem and IEEE CEC 2014 test suite.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [1] Gaussian Adaptation based Parameter Adaptation for Differential Evolution
    Mallipeddi, R.
    Wu, Guohua
    Lee, Minho
    Suganthan, P. N.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 1760 - 1767
  • [2] Distance Based Parameter Adaptation for Differential Evolution
    Viktorin, Adam
    Senkerik, Roman
    Pluhacek, Michal
    Kadavy, Tomas
    Zamuda, Ales
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [3] Differential evolution algorithm with dichotomy-based parameter space compression
    Cui, Laizhong
    Li, Genghui
    Zhu, Zexuan
    Ming, Zhong
    Wen, Zhenkun
    Lu, Nan
    SOFT COMPUTING, 2019, 23 (11) : 3643 - 3660
  • [4] Differential evolution algorithm with dichotomy-based parameter space compression
    Laizhong Cui
    Genghui Li
    Zexuan Zhu
    Zhong Ming
    Zhenkun Wen
    Nan Lu
    Soft Computing, 2019, 23 : 3643 - 3660
  • [5] Differential Evolution with Grid-Based Parameter Adaptation
    Tatsis, Vasileios A.
    Parsopoulos, Konstantinos E.
    SOFT COMPUTING, 2017, 21 (08) : 2105 - 2127
  • [6] Parameter Adaptation in Differential Evolution Based on Diversity Control
    Amali, S. Miruna Joe
    Baskar, Subramanian
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I (SEMCCO 2013), 2013, 8297 : 146 - 157
  • [7] Differential Evolution with Grid-Based Parameter Adaptation
    Vasileios A. Tatsis
    Konstantinos E. Parsopoulos
    Soft Computing, 2017, 21 : 2105 - 2127
  • [8] Neuroevolution for Parameter Adaptation in Differential Evolution
    Stanovov, Vladimir
    Akhmedova, Shakhnaz
    Semenkin, Eugene
    ALGORITHMS, 2022, 15 (04)
  • [9] Biased parameter adaptation in differential evolution
    Stanovov, Vladimir
    Akhmedova, Shakhnaz
    Semenkin, Eugene
    INFORMATION SCIENCES, 2021, 566 : 215 - 238
  • [10] Success-History Based Parameter Adaptation for Differential Evolution
    Tanabe, Ryoji
    Fukunaga, Alex
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 71 - 78